944 resultados para multiple-locus variable-number tandem repeat analysis
Resumo:
OBJECTIVE: Although genetic factors have been implicated in the etiology of bipolar disorder, no specific gene has been conclusively identified. Given the link between abnormalities in serotonergic neurotransmission and bipolar disorder, a candidate gene association approach was applied to study the involvement of the monoamine oxidase A (MAOA) gene, which codes for a catabolic enzyme of serotonin, in the susceptibility to bipolar disorder. METHOD: In France and Switzerland, 272 patients with bipolar disorder and 122 healthy subjects were typed for three polymorphic markers of the MAOA gene: the MAOA-CA repeat, the MAOA restriction fragment length polymorphism (RFLP), and a repeat directly adjacent to the variable number of tandem repeats (VNTR) locus. RESULTS: A significant difference in the distribution of the alleles for the MAOA-CA repeat was observed between the female bipolar patients and comparison group. CONCLUSIONS: The results obtained in the French and Swiss population confirm findings from two studies conducted in the United Kingdom.
Resumo:
Microsatellites are short tandem repeat sequences dispersed throughout the genome. Their instability at multiple genetic loci may result from mismatch repair errors and it occurs in hereditary nonpolyposis colorectal cancer. This instability is also found in many sporadic cancers. In order to evaluate the importance of this process in myeloid leukemias, we studied five loci in different chromosomes of 43 patients, 22 with chronic myelocytic leukemia (CML) in the chronic phase, 7 with CML in blast crisis, and 14 with acute myeloid leukemia (AML), by comparing leukemic DNA extracted from bone marrow and constitutional DNA obtained from buccal epithelial cells. Only one of the 43 patients (2.1%), with relapsed AML, showed an alteration in the allele length at a single locus. Cytogenetic analysis was performed in order to improve the characterization of leukemic subtypes and to determine if specific chromosome aberrations were associated with the presence of microsatellite instability. Several chromosome aberrations were observed, most of them detected at diagnosis and during follow-up of the patients, according to current literature. These findings suggest that microsatellite instability is an infrequent genetic event in myeloid leukemias, adding support to the current view that the mechanisms of genomic instability in solid tumors differ from those observed in leukemias, where specific chromosome aberrations seem to play a major role.
Resumo:
Pregnancy loss can be caused by several factors involved in human reproduction. Although up to 50% of cases remain unexplained, it has been postulated that the major cause of failed pregnancy is an error of embryo implantation. Transmembrane mucin-1 (MUC-1) is a glycoprotein expressed on the endometrial cell surface which acts as a barrier to implantation. The gene that codes for this molecule is composed of a polymorphic tandem repeat of 60 nucleotides. Our objective was to determine if MUC-1 genetic polymorphism is associated with implantation failure in patients with a history of recurrent abortion. The study was conducted on 10 women aged 25 to 35 years with no history of successful pregnancy and with a diagnosis of infertility. The control group consisted of 32 patients aged 25 to 35 years who had delivered at least two full-term live children and who had no history of abortions or fetal losses. MUC-1 amplicons were obtained by PCR and observed on agarose and polyacrylamide gel after electrophoresis. Statistical analysis showed no significant difference in the number of MUC-1 variable number of tandem repeats between these groups (P > 0.05). Our results suggest that there is no effect of the polymorphic MUC-1 sequence on the implantation failure. However, the data do not exclude MUC-1 relevance during embryo implantation. The process is related to several associated factors such as the mechanisms of gene expression in the uterus, specific MUC-1 post-translational modifications and appropriate interactions with other molecules during embryo implantation.
Resumo:
Les dinoflagellés sont des eucaryotes unicellulaires que l’on retrouve autant en eau douce qu’en milieu marin. Ils sont particulièrement connus pour causer des fleurs d’algues toxiques nommées ‘marée-rouge’, ainsi que pour leur symbiose avec les coraux et pour leur importante contribution à la fixation du carbone dans les océans. Au point de vue moléculaire, ils sont aussi connus pour leur caractéristiques nucléaires uniques, car on retrouve généralement une quantité immense d’ADN dans leurs chromosomes et ceux-ci sont empaquetés et condensés sous une forme cristalline liquide au lieu de nucléosomes. Les gènes encodés par le noyau sont souvent présents en multiples copies et arrangés en tandem et aucun élément de régulation transcriptionnelle, y compris la boite TATA, n’a encore été observé. L’organisation unique de la chromatine des dinoflagellés suggère que différentes stratégies sont nécessaires pour contrôler l’expression des gènes de ces organismes. Dans cette étude, j’ai abordé ce problème en utilisant le dinoflagellé photosynthétique Lingulodinium polyedrum comme modèle. L. polyedrum est d’un intérêt particulier, car il a plusieurs rythmes circadiens (journalier). À ce jour, toutes les études sur l’expression des gènes lors des changements circadiens ont démontrées une régulation à un niveau traductionnel. Pour mes recherches, j’ai utilisé les approches transcriptomique, protéomique et phosphoprotéomique ainsi que des études biochimiques pour donner un aperçu de la mécanique de la régulation des gènes des dinoflagellés, ceci en mettant l’accent sur l’importance de la phosphorylation du système circadien de L. polyedrum. L’absence des protéines histones et des nucléosomes est une particularité des dinoflagellés. En utilisant la technologie RNA-Seq, j’ai trouvé des séquences complètes encodant des histones et des enzymes modifiant les histones. L polyedrum exprime donc des séquences conservées codantes pour les histones, mais le niveau d’expression protéique est plus faible que les limites de détection par immunodétection de type Western. Les données de séquençage RNA-Seq ont également été utilisées pour générer un transcriptome, qui est une liste des gènes exprimés par L. polyedrum. Une recherche par homologie de séquences a d’abord été effectuée pour classifier les transcrits en diverses catégories (Gene Ontology; GO). Cette analyse a révélé une faible abondance des facteurs de transcription et une surprenante prédominance, parmi ceux-ci, des séquences à domaine Cold Shock. Chez L. polyedrum, plusieurs gènes sont répétés en tandem. Un alignement des séquences obtenues par RNA-Seq avec les copies génomiques de gènes organisés en tandem a été réalisé pour examiner la présence de transcrits polycistroniques, une hypothèse formulée pour expliquer le manque d’élément promoteur dans la région intergénique de la séquence de ces gènes. Cette analyse a également démontré une très haute conservation des séquences codantes des gènes organisés en tandem. Le transcriptome a également été utilisé pour aider à l’identification de protéines après leur séquençage par spectrométrie de masse, et une fraction enrichie en phosphoprotéines a été déterminée comme particulièrement bien adapté aux approches d’analyse à haut débit. La comparaison des phosphoprotéomes provenant de deux périodes différentes de la journée a révélée qu’une grande partie des protéines pour lesquelles l’état de phosphorylation varie avec le temps est reliées aux catégories de liaison à l’ARN et de la traduction. Le transcriptome a aussi été utilisé pour définir le spectre des kinases présentes chez L. polyedrum, qui a ensuite été utilisé pour classifier les différents peptides phosphorylés qui sont potentiellement les cibles de ces kinases. Plusieurs peptides identifiés comme étant phosphorylés par la Casein Kinase 2 (CK2), une kinase connue pour être impliquée dans l’horloge circadienne des eucaryotes, proviennent de diverses protéines de liaison à l’ARN. Pour évaluer la possibilité que quelques-unes des multiples protéines à domaine Cold Shock identifiées dans le transcriptome puissent moduler l’expression des gènes de L. polyedrum, tel qu’observé chez plusieurs autres systèmes procaryotiques et eucaryotiques, la réponse des cellules à des températures froides a été examinée. Les températures froides ont permis d’induire rapidement un enkystement, condition dans laquelle ces cellules deviennent métaboliquement inactives afin de résister aux conditions environnementales défavorables. Les changements dans le profil des phosphoprotéines seraient le facteur majeur causant la formation de kystes. Les phosphosites prédits pour être phosphorylés par la CK2 sont la classe la plus fortement réduite dans les kystes, une découverte intéressante, car le rythme de la bioluminescence confirme que l’horloge a été arrêtée dans le kyste.
Resumo:
Alzheimer`s Disease (AD) is the most common type of dementia among the elderly, with devastating consequences for the patient, their relatives, and caregivers. More than 300 genetic polymorphisms have been involved with AD, demonstrating that this condition is polygenic and with a complex pattern of inheritance. This paper aims to report and compare the results of AD genetics studies in case-control and familial analysis performed in Brazil since our first publication, 10 years ago. They include the following genes/markers: Apolipoprotein E (APOE), 5-hidroxytryptamine transporter length polymorphic region (5-HTTLPR), brain-derived neurotrophin factor (BDNF), monoamine oxidase A (MAO-A), and two simple-sequence tandem repeat polymorphisms (DXS1047 and D10S1423). Previously unpublished data of the interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) genes are reported here briefly. Results from others Brazilian studies with AD patients are also reported at this short review. Four local families studied with various markers at the chromosome 21, 19, 14, and 1 are briefly reported for the first time. The importance of studying DNA samples from Brazil is highlighted because of the uniqueness of its population, which presents both intense ethnical miscegenation, mainly at the east coast, but also clusters with high inbreeding rates in rural areas at the countryside. We discuss the current stage of extending these studies using high-throughput methods of large-scale genotyping, such as single nucleotide polymorphism microarrays, associated with bioinformatics tools that allow the analysis of such extensive number of genetics variables, with different levels of penetrance. There is still a long way between the huge amount of data gathered so far and the actual application toward the full understanding of AD, but the final goal is to develop precise tools for diagnosis and prognosis, creating new strategies for better treatments based on genetic profile.
Resumo:
The Pacific white shrimp, Litopenaeus vannamei (Penaeidae), represents about 95% of all Brazilian shrimp production. The Brazilian L. vannamei foundation broodstock was made up of specimens collected from different American Pacific sites, but little information was collected on the genetic structure of the broodstock. We used the fluorescence amplified fragment length polymorphism (fAFLP) method to study the genetic diversity of L. vannamei broodstock lines 03CMF1 and 03CBF1 originally produced by breeder-shrimps imported mainly from Panama and Ecuador, although wild individuals from other localities may also have been used in producing these two lines. Our results showed a total of 93 polymorphic bands ranging from 50 to 500 bp, the mean Nei's genetic diversity calculated for the total sample was 13.4% and identity and genetic distance analyses indicated high genetic homogeneity within and between both the broodstock lineages studied which suggests that they had similar genetic structure. These results may represent an important tool for the appropriate management of L. vannamei broodstocks. Copyright by the Brazilian Society of Genetics.
Resumo:
This study describes the comparison of three methods for genotyping of Mycobacterium tuberculosis, namely MIRU-VNTR (mycobacterial interspersed repetitive units-variable number of tandem repeats), spoligotyping and, for the first time, MLST (Multilocus Sequence Typing). In order to evaluate the discriminatory power of these methods, a total of 44 M. tuberculosis isolates obtained from sputum specimens of patients from Brazil were genotyped. Among the three methods, MLST showed the lowest discriminatory power compared to the other two techniques. MIRU-VNTR showed better discriminatory power when compared to spoligotyping, however, the combination of both methods provides the greatest level of discrimination and therefore this combination is the most useful genotyping tool to be applied to M. tuberculosis isolates. © 2013 Elsevier B.V.
Resumo:
Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. © 2013 Lima et al.
Resumo:
Background: Natural polyploidy has played an important role during the speciation and evolution of vertebrates, including anurans, with more than 55 described cases. The species of the Phyllomedusa burmeisteri group are mostly characterized by having 26 chromosomes, but a karyotype with 52 chromosomes was described in P. tetraploidea. This species was found in sintopy with P. distincta in two localities of São Paulo State (Brazil), where triploid animals also occur, as consequence of natural hybridisation. We analyse the chromosomes of P. distincta, P. tetraploidea, and their triploid hybrids, to enlighten the origin of polyploidy and to obtain some evidence on diploidisation of tetraploid karyotype.Results: Phyllomedusa distincta was 2n = 2x = 26, whereas P. tetraploidea was 2n = 4x = 52, and the hybrid individuals was 2n = 3x = 39. In meiotic phases, bivalents were observed in the diploid males, whereas both bivalents and tetravalents were observed in the tetraploid males. Univalents, bivalents or trivalents; metaphase II cells carrying variable number of chromosomes; and spermatids were detected in the testis preparations of the triploid males, indicating that the triploids were not completely sterile. In natural and experimental conditions, the triploids cross with the parental species, producing abnormal egg clutches and tadpoles with malformations. The embryos and tadpoles exhibited intraindividual karyotype variability and all of the metaphases contained abnormal constitutions. Multiple NORs, detected by Ag-impregnation and FISH with an rDNA probe, were observed on chromosome 1 in the three karyotypic forms; and, additionally, on chromosome 9 in the diploids, mostly on chromosome 8 in the tetraploids, and on both chromosome 8 and 9 in the triploids. Nevertheless, NOR-bearing chromosome 9 was detected in the tetraploids, and chromosome 9 carried active or inactive NORs in the triploids. C-banding, base-specific fluorochrome stainings with CMA3 and DAPI, FISH with a telomeric probe, and BrdU incorporation in DNA showed nearly equivalent patterns in the karyotypes of P. distincta, P. tetraploidea, and the triploid hybrids.Conclusions: All the used cytogenetic techniques have provided strong evidence that the process of diploidisation, an essential step for stabilising the selective advantages produced by polyploidisation, is under way in distinct quartets of the tetraploid karyotype. © 2013 Gruber et al.; licensee BioMed Central Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In most eukaryotes, the kinetochore protein complex assembles at a single locus termed the centromere to attach chromosomes to spindle microtubules. Holocentric chromosomes have the unusual property of attaching to spindle microtubules along their entire length. Our mechanistic understanding of holocentric chromosome function is derived largely from studies in the nematode Caenorhabditis elegans, but holocentric chromosomes are found over a broad range of animal and plant species. In this review, we describe how holocentricity may be identified through cytological and molecular methods. By surveying the diversity of organisms with holocentric chromosomes, we estimate that the trait has arisen at least 13 independent times (four times in plants and at least nine times in animals). Holocentric chromosomes have inherent problems in meiosis because bivalents can attach to spindles in a random fashion. Interestingly, there are several solutions that have evolved to allow accurate meiotic segregation of holocentric chromosomes. Lastly, we describe how extensive genome sequencing and experiments in nonmodel organisms may allow holocentric chromosomes to shed light on general principles of chromosome segregation.
Resumo:
Suppose that having established a marginal total effect of a point exposure on a time-to-event outcome, an investigator wishes to decompose this effect into its direct and indirect pathways, also know as natural direct and indirect effects, mediated by a variable known to occur after the exposure and prior to the outcome. This paper proposes a theory of estimation of natural direct and indirect effects in two important semiparametric models for a failure time outcome. The underlying survival model for the marginal total effect and thus for the direct and indirect effects, can either be a marginal structural Cox proportional hazards model, or a marginal structural additive hazards model. The proposed theory delivers new estimators for mediation analysis in each of these models, with appealing robustness properties. Specifically, in order to guarantee ignorability with respect to the exposure and mediator variables, the approach, which is multiply robust, allows the investigator to use several flexible working models to adjust for confounding by a large number of pre-exposure variables. Multiple robustness is appealing because it only requires a subset of working models to be correct for consistency; furthermore, the analyst need not know which subset of working models is in fact correct to report valid inferences. Finally, a novel semiparametric sensitivity analysis technique is developed for each of these models, to assess the impact on inference, of a violation of the assumption of ignorability of the mediator.
Resumo:
BACKGROUND: The Mannheimia species encompass a wide variety of bacterial lifestyles, including opportunistic pathogens and commensals of the ruminant respiratory tract, commensals of the ovine rumen, and pathogens of the ruminant integument. Here we present a scenario for the evolution of the leukotoxin promoter among representatives of the five species within genus Mannheimia. We also consider how the evolution of the leukotoxin operon fits with the evolution and maintenance of virulence. RESULTS: The alignment of the intergenic regions upstream of the leukotoxin genes showed significant sequence and positional conservation over a 225-bp stretch immediately proximal to the transcriptional start site of the lktC gene among all Mannheimia strains. However, in the course of the Mannheimia genome evolution, the acquisition of individual noncoding regions upstream of the conserved promoter region has occurred. The rate of evolution estimated branch by branch suggests that the conserved promoter may be affected to different extents by the types of natural selection that potentially operate in regulatory regions. Tandem repeats upstream of the core promoter were confined to M. haemolytica with a strong association between the sequence of the repeat units, the number of repeat units per promoter, and the phylogenetic history of this species. CONCLUSION: The mode of evolution of the intergenic regions upstream of the leukotoxin genes appears to be highly dependent on the lifestyle of the bacterium. Transition from avirulence to virulence has occurred at least once in M. haemolytica with some evolutionary success of bovine serotype A1/A6 strains. Our analysis suggests that changes in cis-regulatory systems have contributed to the derived virulence phenotype by allowing phase-variable expression of the leukotoxin protein. We propose models for how phase shifting and the associated virulence could facilitate transmission to the nasopharynx of new hosts.
Resumo:
Variable number of tandem repeats (VNTR) are genetic loci at which short sequence motifs are found repeated different numbers of times among chromosomes. To explore the potential utility of VNTR loci in evolutionary studies, I have conducted a series of studies to address the following questions: (1) What are the population genetic properties of these loci? (2) What are the mutational mechanisms of repeat number change at these loci? (3) Can DNA profiles be used to measure the relatedness between a pair of individuals? (4) Can DNA fingerprint be used to measure the relatedness between populations in evolutionary studies? (5) Can microsatellite and short tandem repeat (STR) loci which mutate stepwisely be used in evolutionary analyses?^ A large number of VNTR loci typed in many populations were studied by means of statistical methods developed recently. The results of this work indicate that there is no significant departure from Hardy-Weinberg expectation (HWE) at VNTR loci in most of the human populations examined, and the departure from HWE in some VNTR loci are not solely caused by the presence of population sub-structure.^ A statistical procedure is developed to investigate the mutational mechanisms of VNTR loci by studying the allele frequency distributions of these loci. Comparisons of frequency distribution data on several hundreds VNTR loci with the predictions of two mutation models demonstrated that there are differences among VNTR loci grouped by repeat unit sizes.^ By extending the ITO method, I derived the distribution of the number of shared bands between individuals with any kinship relationship. A maximum likelihood estimation procedure is proposed to estimate the relatedness between individuals from the observed number of shared bands between them.^ It was believed that classical measures of genetic distance are not applicable to analysis of DNA fingerprints which reveal many minisatellite loci simultaneously in the genome, because the information regarding underlying alleles and loci is not available. I proposed a new measure of genetic distance based on band sharing between individuals that is applicable to DNA fingerprint data.^ To address the concern that microsatellite and STR loci may not be useful for evolutionary studies because of the convergent nature of their mutation mechanisms, by a theoretical study as well as by computer simulation, I conclude that the possible bias caused by the convergent mutations can be corrected, and a novel measure of genetic distance that makes the correction is suggested. In summary, I conclude that hypervariable VNTR loci are useful in evolutionary studies of closely related populations or species, especially in the study of human evolution and the history of geographic dispersal of Homo sapiens. (Abstract shortened by UMI.) ^
Resumo:
We have cloned and sequenced a 10.22-kb fragment of the genomic locus of the porcine tumor necrosis factor-encoding genes, TNF-alpha and TNF-beta. A liver genomic DNA library, partially digested with Sau3AI, was cloned into the phage lambda EMBL4 and screened with a porcine TNF-alpha cDNA probe. Analysis showed that both the TNF-alpha and TNF-beta genes were present on the cloned fragment. In addition, the cloned fragment contained about 2 kb of repetitive sequences 5' to the TNF-beta gene. The TNF genes are arranged in a tandem repeat, as is the case for the human, mouse and rabbit TNF genes. The comparison of both genes with their human homologues displayed a considerable degree of conservation (80%), suggesting an equal evolution rate.