949 resultados para multidimensional niche
Resumo:
This paper establishes a general framework for metric scaling of any distance measure between individuals based on a rectangular individuals-by-variables data matrix. The method allows visualization of both individuals and variables as well as preserving all the good properties of principal axis methods such as principal components and correspondence analysis, based on the singular-value decomposition, including the decomposition of variance into components along principal axes which provide the numerical diagnostics known as contributions. The idea is inspired from the chi-square distance in correspondence analysis which weights each coordinate by an amount calculated from the margins of the data table. In weighted metric multidimensional scaling (WMDS) we allow these weights to be unknown parameters which are estimated from the data to maximize the fit to the original distances. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing a matrix and displaying its rows and columns in biplots.
Resumo:
1. Aim - Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data.¦2. Location - Europe, North America, South America¦3. Methods - The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with predefined distributions and amounts of niche overlap to evaluate several ordination and species distribution modeling techniques for quantifying niche overlap. We illustrate the approach with data on two well-studied invasive species.¦4. Results - We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographic space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results.¦5. Main conclusions - The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate to study niche differences between species, subspecies or intraspecific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intraspecific lineage has changed over time.
Resumo:
Eurymetopum is an Andean clerid genus with 22 species. We modeled the ecological niches of 19 species with Maxent and used them as potential distributional maps to identify patterns of richness and endemicity. All modeled species maps were overlapped in a single map in order to determine richness. We performed an optimality analysis with NDM/VNDM in a grid of 1º latitude-longitude in order to identify endemism. We found a highly rich area, located between 32º and 41º south latitude, where the richest pixels have 16 species. One area of endemism was identified, located in the Maule and Valdivian Forest biogeographic provinces, which extends also to the Santiago province of the Central Chilean subregion, and contains four endemic species (E. parallelum, E. prasinum, E. proteus, and E. viride), as well as 16 non-endemic species. The sympatry of these phylogenetically unrelated species might indicate ancient vicariance processes, followed by episodes of dispersal. Based on our results, we suggest a close relationship between these provinces, with the Maule representing a complex area.
Resumo:
Species' geographic ranges are usually considered as basic units in macroecology and biogeography, yet it is still difficult to measure them accurately for many reasons. About 20 years ago, researchers started using local data on species' occurrences to estimate broad scale ranges, thereby establishing the niche modeling approach. However, there are still many problems in model evaluation and application, and one of the solutions is to find a consensus solution among models derived from different mathematical and statistical models for niche modeling, climatic projections and variable combination, all of which are sources of uncertainty during niche modeling. In this paper, we discuss this approach of ensemble forecasting and propose that it can be divided into three phases with increasing levels of complexity. Phase I is the simple combination of maps to achieve a consensual and hopefully conservative solution. In Phase II, differences among the maps used are described by multivariate analyses, and Phase III consists of the quantitative evaluation of the relative magnitude of uncertainties from different sources and their mapping. To illustrate these developments, we analyzed the occurrence data of the tiger moth, Utetheisa ornatrix (Lepidoptera, Arctiidae), a Neotropical moth species, and modeled its geographic range in current and future climates.
Resumo:
This paper examines properties of optimal poverty assistance programs under different informational environments using an income maintenanceframework. To that end, we make both the income generating ability andthe disutility of labor of individuals unobservable, and compare theresulting benefit schedules with those of programs found in the UnitedStates since Welfare Reform (1996). We find that optimal programs closelyresemble a Negative Income Tax with a Benefit Reduction rate that dependson the distribution of population characteristics. A policy of workfare(unpaid public sector work) is inefficient when disutility of labor isunobservable, but minimum work requirements (for paid work) may be usedin that same environment. The distortions to work incentives and thepresence of minimum work requirements depend on the observability andrelative importance of the population's characteristics.
Resumo:
Aim Macroevolutionary patterns and processes change substantially depending on levels of taxonomic and ecological organization, and the resolution of environmental and spatial variability. In comparative methods, the resolution of environmental and spatial variability often defines the number of selective regimes used to test whether phenotypic characteristics are adaptively correlated with the environment. Here, we examine how investigator choice of the number of selective regimes, determined by varying the resolution of among-species variability in the species climatic niche (hereafter called ecological scale'), influences trait morphological diversification among Eriogonoideae species. We assess whether adaptive or neutral processes drive the evolution of several morphological traits in these species. Location South-western North America. Methods We applied a phylogenetic framework of three evolutionary models to four morphological traits and the climatic niches of Eriogonoideae (in the buckwheat family, Polygonaceae). We tested whether morphological traits evolve in relation to climate by adaptive or neutral process, and whether the resulting patterns of morphological variability are conserved or convergent across the clade. We inspected adaptive models of evolution under different levels of resolution of among-species variability of the climatic niche. Results We show that morphological traits and climate niches of Eriogonoideae species are not phylogenetically conserved. Further, adaptive evolution of phenotypic traits is specific to climatic niche occupancy across this clade. Finally, the likely evolutionary process and the level of detectable niche conservatism change depending on the resolution of environmental variability of the climatic niche. Main conclusions Our study demonstrates the need to consider both the resolution of environmental variability and alternative evolutionary models to understand the morphological diversification that accompanies divergent adaptive evolution of lineages to climatic conditions.
Resumo:
Understanding factors that shape ranges of species is central in evolutionary biology. Species distribution models have become important tools to test biogeographical, ecological and evolutionary hypotheses. Moreover, from an ecological and evolutionary perspective, these models help to elucidate the spatial strategies of species at a regional scale. We modelled species distributions of two phylogenetically, geographically and ecologically close Tupinambis species (Teiidae) that occupy the southernmost area of the genus distribution in South America. We hypothesized that similarities between these species might have induced spatial strategies at the species level, such as niche differentiation and divergence of distribution patterns at a regional scale. Using logistic regression and MaxEnt we obtained species distribution models that revealed interspecific differences in habitat requirements, such as environmental temperature, precipitation and altitude. Moreover, the models obtained suggest that although the ecological niches of Tupinambis merianae and T. rufescens are different, these species might co-occur in a large contact zone. We propose that niche plasticity could be the mechanism enabling their co-occurrence. Therefore, the approach used here allowed us to understand the spatial strategies of two Tupinambis lizards at a regional scale.
Resumo:
Plasma cells represent the end stage of B-cell development and play a key role in providing an efficient antibody response, but they are also involved in numerous pathologies. Here we show that CD93, a receptor expressed during early B-cell development, is reinduced during plasma-cell differentiation. High CD93/CD138 expression was restricted to antibody-secreting cells both in T-dependent and T-independent responses as naive, memory, and germinal-center B cells remained CD93-negative. CD93 was expressed on (pre)plasmablasts/plasma cells, including long-lived plasma cells that showed decreased cell cycle activity, high levels of isotype-switched Ig secretion, and modification of the transcriptional network. T-independent and T-dependent stimuli led to re-expression of CD93 via 2 pathways, either before or after CD138 or Blimp-1 expression. Strikingly, while humoral immune responses initially proceeded normally, CD93-deficient mice were unable to maintain antibody secretion and bone-marrow plasma-cell numbers, demonstrating that CD93 is important for the maintenance of plasma cells in bone marrow niches.
Resumo:
Niche construction, by which organisms modify the environment in which they live, has been proposed to affect the evolution of many phenotypic traits. But what about the evolution of a niche constructing trait itself, whose expression changes the pattern of natural selection to which the trait is exposed in subsequent generations? This article provides an inclusive fitness analysis of selection on niche constructing phenotypes, which can affect their environment from local to global scales in arbitrarily spatially subdivided populations. The model shows that phenotypic effects of genes extending far beyond the life span of the actor can be affected by natural selection, provided they modify the fitness of those individuals living in the future that are likely to have inherited the niche construction lineage of the actor. Present benefits of behaviors are thus traded off against future indirect costs. The future costs will generally result from a complicated interplay of phenotypic effects, population demography and environmental dynamics. To illustrate these points, I derive the adaptive dynamics of a trait involved in the consumption of an abiotic resource, where resource abundance in future generations feeds back to the evolutionary dynamics of the trait.
Resumo:
1. Identifying the boundary of a species' niche from observational and environmental data is a common problem in ecology and conservation biology and a variety of techniques have been developed or applied to model niches and predict distributions. Here, we examine the performance of some pattern-recognition methods as ecological niche models (ENMs). Particularly, one-class pattern recognition is a flexible and seldom used methodology for modelling ecological niches and distributions from presence-only data. The development of one-class methods that perform comparably to two-class methods (for presence/absence data) would remove modelling decisions about sampling pseudo-absences or background data points when absence points are unavailable. 2. We studied nine methods for one-class classification and seven methods for two-class classification (five common to both), all primarily used in pattern recognition and therefore not common in species distribution and ecological niche modelling, across a set of 106 mountain plant species for which presence-absence data was available. We assessed accuracy using standard metrics and compared trade-offs in omission and commission errors between classification groups as well as effects of prevalence and spatial autocorrelation on accuracy. 3. One-class models fit to presence-only data were comparable to two-class models fit to presence-absence data when performance was evaluated with a measure weighting omission and commission errors equally. One-class models were superior for reducing omission errors (i.e. yielding higher sensitivity), and two-classes models were superior for reducing commission errors (i.e. yielding higher specificity). For these methods, spatial autocorrelation was only influential when prevalence was low. 4. These results differ from previous efforts to evaluate alternative modelling approaches to build ENM and are particularly noteworthy because data are from exhaustively sampled populations minimizing false absence records. Accurate, transferable models of species' ecological niches and distributions are needed to advance ecological research and are crucial for effective environmental planning and conservation; the pattern-recognition approaches studied here show good potential for future modelling studies. This study also provides an introduction to promising methods for ecological modelling inherited from the pattern-recognition discipline.
Resumo:
Niche-based models calibrated in the native range by relating species observations to climatic variables are commonly used to predict the potential spatial extent of species' invasion. This climate matching approach relies on the assumption that invasive species conserve their climatic niche in the invaded ranges. We test this assumption by analysing the climatic niche spaces of Spotted Knapweed in western North America and Europe. We show with robust cross-continental data that a shift of the observed climatic niche occurred between native and non-native ranges, providing the first empirical evidence that an invasive species can occupy climatically distinct niche spaces following its introduction into a new area. The models fail to predict the current invaded distribution, but correctly predict areas of introduction. Climate matching is thus a useful approach to identify areas at risk of introduction and establishment of newly or not-yet-introduced neophytes, but may not predict the full extent of invasions.
Resumo:
Assessing whether the climatic niche of a species may change between different geographic areas or time periods has become increasingly important in the context of ongoing global change. However, approaches and findings have remained largely controversial so far, calling for a unification of methods. Here, we build on a review of empirical studies of invasion to formalize a unifying framework that decomposes niche change into unfilling, stability, and expansion situations, taking both a pooled range and range-specific perspective on the niche, while accounting for climatic availability and climatic analogy. This framework provides new insights into the nature of climate niche shifts and our ability to anticipate invasions, and may help in guiding the design of experiments for assessing causes of niche changes.
Resumo:
We study the Brownian motion in velocity-dependent fields of force. Our main result is a Smoluchowski equation valid for moderate to high damping constants. We derive that equation by perturbative solution of the Langevin equation and using functional derivative techniques.