951 resultados para moving object detection


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the two datasets (ARENA and P5) and the challenge that form a part of the PETS 2015 workshop. The datasets consist of scenarios recorded by us- ing multiple visual and thermal sensors. The scenarios in ARENA dataset involve different staged activities around a parked vehicle in a parking lot in UK and those in P5 dataset involve different staged activities around the perimeter of a nuclear power plant in Sweden. The scenarios of each dataset are grouped into ‘Normal’, ‘Warning’ and ‘Alarm’ categories. The Challenge specifically includes tasks that account for different steps in a video understanding system: Low-Level Video Analysis (object detection and tracking), Mid-Level Video Analysis (‘atomic’ event detection) and High-Level Video Analysis (‘complex’ event detection). The evaluation methodology used for the Challenge includes well-established measures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a quantitative evaluation of a tracking system on PETS 2015 Challenge datasets using well-established performance measures. Using the existing tools, the tracking system implements an end-to-end pipeline that include object detection, tracking and post- processing stages. The evaluation results are presented on the provided sequences of both ARENA and P5 datasets of PETS 2015 Challenge. The results show an encouraging performance of the tracker in terms of accuracy but a greater tendency of being prone to cardinality error and ID changes on both datasets. Moreover, the analysis show a better performance of the tracker on visible imagery than on thermal imagery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the dataset and vision challenges that form part of the PETS 2014 workshop. The datasets are multisensor sequences containing different activities around a parked vehicle in a parking lot. The dataset scenarios were filmed from multiple cameras mounted on the vehicle itself and involve multiple actors. In PETS2014 workshop, 22 acted scenarios are provided of abnormal behaviour around the parked vehicle. The aim in PETS 2014 is to provide a standard benchmark that indicates how detection, tracking, abnormality and behaviour analysis systems perform against a common database. The dataset specifically addresses several vision challenges corresponding to different steps in a video understanding system: Low-Level Video Analysis (object detection and tracking), Mid-Level Video Analysis (‘simple’ event detection: the behaviour recognition of a single actor) and High-Level Video Analysis (‘complex’ event detection: the behaviour and interaction recognition of several actors).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work uses computer vision algorithms related to features in the identification of medicine boxes for the visually impaired. The system is for people who have a disease that compromises his vision, hindering the identification of the correct medicine to be ingested. We use the camera, available in several popular devices such as computers, televisions and phones, to identify the box of the correct medicine and audio through the image, showing the poor information about the medication, such: as the dosage, indication and contraindications of the medication. We utilize a model of object detection using algorithms to identify the features in the boxes of drugs and playing the audio at the time of detection of feauteres in those boxes. Experiments carried out with 15 people show that where 93 % think that the system is useful and very helpful in identifying drugs for boxes. So, it is necessary to make use of this technology to help several people with visual impairments to take the right medicine, at the time indicated in advance by the physician

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(10) Hygiea is the fourth largest asteroid of the main belt, by volume and mass, and it is the largest member of its family, that is made mostly by low-albedo, C-type asteroids, typical of the outer main belt. Like many other large families, it is associated with a 'halo' of objects, that extends far beyond the boundary of the core family, as detected by traditional hierarchical clustering methods (HCM) in proper element domains. Numerical simulations of the orbital evolution of family members may help in estimating the family and halo family age, and the original ejection velocity field. But, in order to minimize the errors associated with including too many interlopers, it is important to have good estimates of family membership that include available data on local asteroid taxonomy, geometrical albedo and local dynamics. For this purpose, we obtained synthetic proper elements and frequencies of asteroids in the Hygiea orbital region, with their errors. We revised the current knowledge on asteroid taxonomy, including Sloan Digital Sky Survey-Moving Object Catalog 4th release (SDSS-MOC 4) data, and geometric albedo data from Wide-field Infrared Survey Explorer (WISE) and Near-Earth Object WISE (NEOWISE). We identified asteroid family members using HCM in the domain of proper elements (a, e, sin (i)) and in the domains of proper frequencies most appropriate to study diffusion in the local web of secular resonances, and eliminated possible interlopers based on taxonomic and geometrical albedo considerations. To identify the family halo, we devised a new hierarchical clustering method in an extended domain that includes proper elements, principal components PC1, PC2 obtained based on SDSS photometric data and, for the first time, WISE and NEOWISE geometric albedo. Data on asteroid size distribution, light curves and rotations were also revised for the Hygiea family. The Hygiea family is the largest group in its region, with two smaller families in proper element domain and 18 families in various frequencies domains identified in this work for the first time. Frequency groups tend to extend vertically in the (a, sin (i)) plane and cross not only the Hygiea family but also the near C-type families of Themis and Veritas, causing a mixture of objects all of relatively low albedo in the Hygiea family area. A few high-albedo asteroids, most likely associated with the Eos family, are also present in the region. Finally, the new multidomains hierarchical clustering method allowed us to obtain a good and robust estimate of the membership of the Hygiea family halo, quite separated from other asteroids families halo in the region, and with a very limited (about 3 per cent) presence of likely interlopers. © 2013 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Organizaçãao Mundial da Sáude caracteriza o trânsito como um problema de sáude pública, motivo pelo qual se justificam as preocupações e os esforços de diversos países em criar políticas que venham a frear os índices cada vez mais crescentes de acidentes de trânsito que trazem prejuízos sociais e financeiros a todos. Neste sentido, a conservação da infraestrutura das rodovias ganha um papel relevante nas discussões que tratam os acidentes e suas causas, vez que a infraestrutura de uma rodovia pode ser apontada como um fator determinante para tais ocorrências. Diante disto, esta dissertação tem como objetivo investigar de que forma a precariedade estrutural da Rodovia Federal BR 316, entre os quilômetros 0 ao 10, potencializou a ocorrência de acidentes de trânsito nos anos de 2009 a 2012. Para tanto, lançou-se mão de uma metodologia baseada em explorações teóricas aliadas a análise de informações provenientes do banco de dados da Polícia Rodoviária Federal e pesquisa de campo, materializada a partir da apresentação de fotos ilustrativas do trecho pesquisado, possibilitando o desenvolvimento de um novo Índice de Qualidade para a Rodovia. Os dados colhidos foram tratados a partir da aplicação das técnicas estatísticas análise descritiva e análise multivariada a fim de confirmar a hipótese suscitada. Destaque-se que, no trecho pesquisado o fluxo de veículos e pedestres é intenso e, além, é um intervalo quilométrico que apresenta diversos problemas estruturais como, por exemplo, o aumento e a diminuição do número de pistas de rolamento, a má qualidade dos retornos, a falta de segurança e higiene das passarelas, a descontinuidade dos acostamentos, a inadequação das paradas de ônibus, enfim. No que tange à acidentes e às suas causas, pôde-se constatar que no ano de 2010 houveram mais ocorrências, especialmente, do tipo colisão com bicicleta, colisão com objeto móvel, colisão frontal e colisão transversal, motivadas por desobediência à sinalização, velocidade incompatível, ingestão de álcool, dentre outros. Finalmente, deve-se ressaltar o fato de que nos trechos considerados ruins, além da falta de atenção, a principal causa de acidentes é o defeito na via, corroborando-se então, a hipótese que a precariedade da infraestrutura da rodovia potencializou as ocorrências de acidentes de trânsito, no período de 2009 a 2012. Diante disto, é possível afirmar que o acidente de trânsito é um fato social, consubstanciando como um problema que abarca aspectos sociopolíticos e culturais da sociedade moderna, mas que também é potencializado pelo estado de conservação estrutural das Rodovias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[ES] Este Trabajo de Fin de Grado describe el desarrollo de un prototipo para plataformas móviles, que permite determinar si un pez alcanza la talla mínima establecida para su consumo. Para ello se realiza la detección y segmentación de un pez, para posteriormente determinar si cumple con la talla mínima, utilizando como referencia una moneda de un euro para calibrar el tamaño. La detección se realiza aplicando la implementación del esquema de Viola-Jones, integrada en la librería  OpenCV, creando una serie de detectores propios  tanto para los peces como para la moneda. Asimismo se ha utilizado SDK del que dispone dicha librería para desarrollar la aplicación en plataforma móvil Android.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis investigates interactive scene reconstruction and understanding using RGB-D data only. Indeed, we believe that depth cameras will still be in the near future a cheap and low-power 3D sensing alternative suitable for mobile devices too. Therefore, our contributions build on top of state-of-the-art approaches to achieve advances in three main challenging scenarios, namely mobile mapping, large scale surface reconstruction and semantic modeling. First, we will describe an effective approach dealing with Simultaneous Localization And Mapping (SLAM) on platforms with limited resources, such as a tablet device. Unlike previous methods, dense reconstruction is achieved by reprojection of RGB-D frames, while local consistency is maintained by deploying relative bundle adjustment principles. We will show quantitative results comparing our technique to the state-of-the-art as well as detailed reconstruction of various environments ranging from rooms to small apartments. Then, we will address large scale surface modeling from depth maps exploiting parallel GPU computing. We will develop a real-time camera tracking method based on the popular KinectFusion system and an online surface alignment technique capable of counteracting drift errors and closing small loops. We will show very high quality meshes outperforming existing methods on publicly available datasets as well as on data recorded with our RGB-D camera even in complete darkness. Finally, we will move to our Semantic Bundle Adjustment framework to effectively combine object detection and SLAM in a unified system. Though the mathematical framework we will describe does not restrict to a particular sensing technology, in the experimental section we will refer, again, only to RGB-D sensing. We will discuss successful implementations of our algorithm showing the benefit of a joint object detection, camera tracking and environment mapping.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In un mondo che richiede sempre maggiormente un'automazione delle attività della catena produttiva industriale, la computer vision rappresenta uno strumento fondamentale perciò che viene già riconosciuta internazionalmente come la Quarta Rivoluzione Industriale o Industry 4.0. Avvalendomi di questo strumento ho intrapreso presso l'azienda Syngenta lo studio della problematica della conta automatica del numero di foglie di una pianta. Il problema è stato affrontato utilizzando due differenti approcci, ispirandosi alla letteratura. All'interno dell'elaborato è presente anche la descrizione progettuale di un ulteriore metodo, ad oggi non presente in letteratura. Le metodologie saranno spiegate in dettaglio ed i risultati ottenuti saranno confrontati utilizzando i primi due approcci. Nel capitolo finale si trarranno le conclusioni sulle basi dei risultati ottenuti e dall'analisi degli stessi.