907 resultados para monoclonal-antibodies
Resumo:
As the first step of a research program aimed at developing a bispecific monoclonal antibody system for the delivery of boron-rich molecules to tumor cells for boron neutron capture therapy, monoclonal antibodies (mAbs) were produced against an anionic nido-carborane derivative, 4-[7,8-dicarbadodecahydroundecaborat(-1)-7-yl]butanoic acid. Two IgG subclass mAbs, designated HAW101 and HAW102, were identified that specifically bound the anionic nido-carborane hapten, as well as a variety of other anionic nido-carborane cage derivatives. By using surface plasmon resonance technology, the affinity constants of HAW101 and HAW102 were determined to be 1.9 x 10(9) and 6.8 x 10(8) M-1, respectively. A diverse array of 7-substituted and 7,8-disubstituted anionic nido-carborane derivatives reacted with the mAb HAW101 in competition ELISA, whereas anionic closo-polyhedral boranes showed negligible binding, suggesting a role for the open nido-carborane cage structure. These results suggest that mAbs such as HAW101, which bind anionic nido-carboranes, are useful in the development of bispecific mAbs for specific targeting and enhanced boron delivery to tumor sites.
Resumo:
Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.
Resumo:
Peripheral blood leukocytes incubated with a semisynthetic phage antibody library and fluorochrome-labeled CD3 and CD20 antibodies were used to isolate human single-chain Fv antibodies specific for subsets of blood leukocytes by flow cytometry. Isolated phage antibodies showed exclusive binding to the subpopulation used for selection or displayed additional binding to a restricted population of other cells in the mixture. At least two phage antibodies appeared to display hitherto-unknown staining patterns of B-lineage cells. This approach provides a subtractive procedure to rapidly obtain human antibodies against known and novel surface antigens in their native configuration, expressed on phenotypically defined subpopulations of cells. This approach does not depend on immunization procedures or the necessity to repeatedly construct phage antibody libraries.
Resumo:
Amplification and overexpression of the erbB-2/neu protooncogene are frequently associated with aggressive clinical course of certain human adenocarcinomas, and therefore the encoded surface glycoprotein is considered a candidate target for immunotherapy. We previously generated a series of anti-ErbB-2 monoclonal antibodies (mAbs) that either accelerate or inhibit the tumorigenic growth of erbB-2-transformed murine fibroblasts. The present study extended this observation to a human tumor cell line grown as xenografts in athymic mice and addressed the biochemical differences between the two classes of mAbs. We show that the inhibitory effect is dominant in an antibody mixture, and it depends on antibody bivalency. By using radiolabeled mAbs we found that all of three tumor-inhibitory mAbs became rapidly inaccessible to acid treatment when incubated with tumor cells. However, a tumor-stimulatory mAb remained accessible to extracellular treatments, indicating that it did not undergo endocytosis. In addition, intracellular fragments of the inhibitory mAbs, but not of the stimulatory mAb, were observed. Electron microscopy of colloidal gold-antibody conjugates confirmed the absence of endocytosis of the stimulatory mAb but detected endocytic vesicles containing an inhibitory mAb. We conclude that acceleration of cell growth by ErbB-2 correlates with cell surface localization, whereas inhibition of tumor growth is associated with an intrinsic ability of anti-ErbB-2 mAbs to induce endocytosis. These conclusions are relevant to the selection of optimal mAbs for immunotherapy and may have implications for the mechanism of cellular transformation by an overexpressed erbB-2 gene.
Resumo:
In this study we describe optimization of polyethylenimine (PEI)-mediated transient production of recombinant protein by CHO cells by facile manipulation of a chemically defined culture environment to limit accumulation of nonproductive cell biomass, increase the duration of recombinant protein production from transfected plasmid DNA, and increase cell-specific production. The optimal conditions for transient transfection of suspension-adapted CHO cells using branched, 25 kDa PEI as a gene delivery vehicle were experimentally determined by production of secreted alkaline phosphatase reporter in static cultures and recombinant IgG(4) monoclonal antibody (Mab) production in agitated shake flask cultures to be a DNA concentration of 1.25 mu g 10(6) cells(-1) mL(-1) at a PEI nitrogen: DNA phosphate ratio of 20:1. These conditions represented the optimal compromise between PEI cytotoxicity and product yield with most efficient recombinant DNA utilization. Separately, both addition of recombinant insulin-like growth factor (LR3-IGF) and a reduction in culture temperature to 32 degrees C were found to increase product titer 2- and 3-fold, respectively. However, mild hypothermia and LR3-IGF acted synergistically to increase product titer 11-fold. Although increased product titer in the presence of LR3-IGF alone was solely a consequence of increased culture duration, a reduction in culture temperature post-transfection increased both the integral of viable cell concentration (IVC) and cell-specific Mab production rate. For cultures maintained at 32 degrees C in the presence of LR3-IGF, IVC and qMab were increased 4- and 2.5-fold, respectively. To further increase product yield from transfected DNA, the duration of transgene expression in cell populations maintained at 32 C in the presence of LR3-IGF was doubled by periodic resuspension of transfected cells in fresh media, leading to a 3-fold increase in accumulated Mab titer from similar to 13 to similar to 39 mg L-1. Under these conditions, Mab glycosylation at Asn297 remained essentially constant and similar to that of the same Mab produced by stably transfected GS-CHO cells. From these data we suggest that the efficiency of transient production processes (protein output per rDNA input) can be significantly improved using a combination of mild hypothermia and growth factor(s) to yield an extended activated hypothermic synthesis.
Resumo:
This Article Right arrow Full Text Right arrow Full Text (PDF) Right arrow Supplemental material Right arrow Alert me when this article is cited Right arrow Alert me if a correction is posted Services Right arrow Similar articles in this journal Right arrow Similar articles in PubMed Right arrow Alert me to new issues of the journal Right arrow Download to citation manager Right arrow Reprints and Permissions Right arrow Copyright Information Right arrow Books from ASM Press Right arrow MicrobeWorld Citing Articles Right arrow Citing Articles via HighWire Right arrow Citing Articles via Google Scholar Google Scholar Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Search for Related Content PubMed Right arrow PubMed Citation Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Pubmed/NCBI databases * Substance via MeSH Previous Article | Next Article Journal of Clinical Microbiology, August 2006, p. 2773-2778, Vol. 44, No. 8 0095-1137/06/$08.00+0 doi:10.1128/JCM.02557-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Effect of Sequence Variation in Plasmodium falciparum Histidine- Rich Protein 2 on Binding of Specific Monoclonal Antibodies: Implications for Rapid Diagnostic Tests for Malaria{dagger} Nelson Lee,1,2 Joanne Baker,2 Kathy T. Andrews,1 Michelle L. Gatton,1,3 David Bell,4 Qin Cheng,2,3 and James McCarthy1* Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research and School of Population Health, University of Queensland, Queensland, Australia,1 Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia,2 Malaria Drug Resistance and Chemotherapy, Queensland Institute of Medical Research, Queensland, Australia,3 World Health Organization, Regional Office for the Western Pacific, Manila, Philippines4 Received 8 December 2005/ Returned for modification 23 February 2006/ Accepted 26 May 2006 The ability to accurately diagnose malaria infections, particularly in settings where laboratory facilities are not well developed, is of key importance in the control of this disease. Rapid diagnostic tests (RDTs) offer great potential to address this need. Reports of significant variation in the field performance of RDTs based on the detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) (PfHRP2) and of significant sequence polymorphism in PfHRP2 led us to evaluate the binding of four HRP2-specific monoclonal antibodies (MABs) to parasite proteins from geographically distinct P. falciparum isolates, define the epitopes recognized by these MABs, and relate the copy number of the epitopes to MAB reactivity. We observed a significant difference in the reactivity of the same MAB to different isolates and between different MABs tested with single isolates. When the target epitopes of three of the MABs were determined and mapped onto the peptide sequences of the field isolates, significant variability in the frequency of these epitopes was observed. These findings support the role of sequence variation as an explanation for variations in the performance of HRP2-based RDTs and point toward possible approaches to improve their diagnostic sensitivities
Resumo:
Antibodies reactive with native double stranded DNA are characteristic of the chronic inflammatory disease systemic lupus erythematosus. Native DNA is however, a poor immunogen and the mechanism of anti-DNA antibody production is incompletely understood. Modification of DNA can increase its immunogenicity and in inflammatory disease states reactive oxygen species produced from phagocytic cells have been shown to thus modify DNA. In this study, monoclonal antibodies produced spontaneously by two mice strains with lupus-like disease were used in a competition ELISA to monitor changes to DNA induced by reactive oxygen species. Different procedures for reactive oxygen species generation were found to cause distinct and characteristic changes to DNA involving modifications of base residues, the sugar-phosphate backbone and the gross conformational structure of double-stranded DNA. In view of this, it may be possible to use these antibodies further to probe DNA and infer the source and nature of the reactive oxygen species it has been exposed to, particularly in vivo.
Resumo:
The focus of this research was defined by a poorly characterised filtration train employed to clarify culture broth containing monoclonal antibodies secreted by GS-NSO cells: the filtration train blinded unpredictably and the ability of the positively charged filters to adsorb DNA from process material was unknown. To direct the development of an assay to quantify the ability of depth filters to adsorb DNA, the molecular weight of DNA from a large-scale, fed-batch, mammalian cell culture vessel was evaluated as process material passed through the initial stages of the purification scheme. High molecular weight DNA was substantially cleared from the broth after passage through a disc stack centrifuge and the remaining low molecular weight DNA was largely unaffected by passage through a series of depth filters and a sterilising grade membrane. Removal of high molecular weight DNA was shown to be coupled with clarification of the process stream. The DNA from cell culture supernatant showed a pattern of internucleosomal cleavage of chromatin when fractionated by electrophoresis but the presence of both necrotic and apoptotic cells throughout the fermentation meant that the origin of the fragmented DNA could not be unequivocally determined. An intercalating fluorochrome, PicoGreen, was elected for development of a suitable DNA assay because of its ability to respond to low molecular weight DNA. It was assessed for its ability to determine the concentration of DNA in clarified mammalian cell culture broths containing pertinent monoclonal antibodies. Fluorescent signal suppression was ameliorated by sample dilution or by performing the assay above the pI of secreted IgG. The source of fluorescence in clarified culture broth was validated by incubation with RNase A and DNase I. At least 89.0 % of fluorescence was attributable to nucleic acid and pre-digestion with RNase A was shown to be a requirement for successful quantification of DNA in such samples. Application of the fluorescence based assay resulted in characterisation of the physical parameters governing adsorption of DNA by various positively charged depth filters and membranes in test solutions and the DNA adsorption profile of the manufacturing scale filtration train. Buffers that reduced or neutralised the depth filter or membrane charge, and those that impeded hydrophobic interactions were shown to affect their operational capacity, demonstrating that DNA was adsorbed by a combination of electrostatic and hydrophobic interactions. Production-scale centrifugation of harvest broth containing therapeutic protein resulted in the reduction of total DNA in the process stream from 79.8 μg m1-1 to 9.3 μg m1-1 whereas the concentration of DNA in the supernatant of pre-and post-filtration samples had only marginally reduced DNA content: from 6.3 to 6.0 μg m1-1 respectively. Hence the filtration train was shown to ineffective in DNA removal. Historically, blinding of the depth filters had been unpredictable with data such as numbers of viable cells, non-viable cells, product titre, or process shape (batch, fed-batch, or draw and fill) failing to inform on the durability of depth filters in the harvest step. To investigate this, key fouling contaminants were identified by challenging depth filters with the same mass of one of the following: viable healthy cells, cells that had died by the process of apoptosis, and cells that had died through the process of necrosis. The pressure increase across a Cuno Zeta Plus 10SP depth filter was 2.8 and 16.5 times more sensitive to debris from apoptotic and necrotic cells respectively, when compared to viable cells. The condition of DNA released into the culture broth was assessed. Necrotic cells released predominantly high molecular weight DNA in contrast to apoptotic cells which released chiefly low molecular weight DNA. The blinding of the filters was found to be largely unaffected by variations in the particle size distribution of material in, and viscosity of, solutions with which they were challenged. The exceptional response of the depth filters to necrotic cells may suggest the cause of previously noted unpredictable filter blinding whereby a number of necrotic cells have a more significant impact on the life of a depth filter than a similar number of viable or apoptotic cells. In a final set of experiments the pressure drop caused by non-viable necrotic culture broths which had been treated with DNase I or benzonase was found to be smaller when compared to untreated broths: the abilities of the enzyme treated cultures to foul the depth filter were reduced by 70.4% and 75.4% respectively indicating the importance of DNA in the blinding of the depth filter studied.
Resumo:
Cation exchange chromatography (CEX) is a well established strategy for the characterization of monoclonal antibodies (mAbs). The optimization of mobile phase conditions is well described in the literature, but there is a lack of information about CEX stationary phases for the analysis of therapeutic proteins. The aim of this study was to compare five state-of-the-art CEX stationary phases based on the retention, selectivity and resolving power achieved in pH- and salt-gradient modes, with various therapeutic mAbs and their variants. The Sepax Antibodix WCX-NP3, Thermo MAbPac SCX-10 RS, YMC BioPro SP-F, Waters Protein-Pak Hi Res SP and Agilent Bio mAb NP1.7 SS were considered in this study. In terms of retention, the YMC Bio Pro SP-F material was the less retentive one, while the Agilent Bio mAb NP1.7 SS provides the highest retention. Regarding the selectivity achieved between the main mAbs isoforms and their variants, the Thermo MabPac SCX column generally gave the highest selectivity. Finally, it was hard to rank columns in term of kinetic performance since their performance is strongly solute (mAb) and elution mode (pH or salt gradient) dependent. However, the highest resolution--in most cases--was observed on the strong cation exchanger YMC Bio Pro SP-F material.
Resumo:
Mother-to-child transmission of HIV is a unique setting that allows us to explore both the correlates of protective immunity and the characteristics of transmitted variants. This thesis first describes the levels and functional capacity of breast milk HIV-specific antibodies in 19 women with high plasma viral loads. Neutralizing antibodies (Nabs) were detected in breast milk supernatant (BMS) of 4 of 19 women examined, were of low potency and were not associated with infant infection. The low NAb activity in BMS was reflected in binding antibody levels with HIV envelope specific IgG titers being 2.2 log10 lower in BMS versus plasma. In contrast, non- neutralizing antibodies (nNAbs) capable of antibody dependent cell-mediated cytotoxicity (ADCC) were detected in the BMS from all 19 women. BMS ADCC activity was associated with envelope-specific IgG titers (p = 0.014) and was inversely associated with infant infection risk (p = 0.039). Our data indicate that BMS has limited HIV neutralizing activity, however, BMS ADCC activity is a correlate of transmission that may impact infant infection risk. In the second part of this thesis the neutralization sensitivity of 111 variants of diverse subtypes obtained from mothers and infants was determined against 7 HIVspecific broadly neutralizing monoclonal antibodies (mAbs) (NIH45-46w, VRC01, PGT128, PGT121, PG9 PGT145 and b12). Maternal and infant variants did not differ in their neutralization sensitivity to these mAbs and neither did variants from transmitting versus those from non-transmitting women. However, subtype A viruses were iii significantly more sensitive to neutralization by NIH45-46w and VRC01 (p= 0.0001 in both cases) and PGT145 (p=0.03) compared to non-subtype A viruses. Together, NIH45- 46w and PGT128 neutralization profiles resulted in 100% coverage of the variants tested. These data suggest that the epitopes targeted by these mAbs are present and accessible in both circulating and transmitted variants and that a combination of antibodies would provide maximum coverage against diverse subtypes commonly found in HIV endemic regions. Overall, this data suggest that an antibody based HIV vaccine capable of eliciting antibodies of multiple specificities that can mediate ADCC and/or neutralizing activity can provide protection and conquer the genetic diversity displayed by HIV.
Resumo:
The chemokine receptor CCR5 contains seven transmembrane-spanning domains. It binds chemokines and acts as co-receptor for macrophage (m)-tropic (or R5) strains of HIV-1. Monoclonal antibodies (mAb) to CCR5, 3A9 and 5C7, were used for biopanning a nonapeptide cysteine (C)-constrained phage-displayed random peptide library to ascertain contact residues and define tertiary structures of possible epitopes on CCR5. Reactivity of antibodies with phagotopes was established by enzyme-linked immunosorbent assay (ELISA). mAb 3A9 identified a phagotope C-HASIYDFGS-C (3A9/1), and 5C7 most frequently identified C-PHWLRDLRV-C (5C7/1). Corresponding peptides were synthesized. Phagotopes and synthetic peptides reacted in ELISA with corresponding antibodies and synthetic peptides inhibited antibody binding to the phagotopes. Reactivity by immunofluorescence of 3A9 with CCR5 was strongly inhibited by the corresponding peptide. Both mAb 3A9 and 5C7 reacted similarly with phagotopes and the corresponding peptide selected by the alternative mAb. The sequences of peptide inserts of phagotopes could be aligned as mimotopes of the sequence of CCR5. For phage 3A9/1, the motif SIYD aligned to residues at the N terminus and FG to residues on the first extracellular loop; for 5C7/1, residues at the N terminus, first extracellular loop, and possibly the third extracellular loop could be aligned and so would contribute to the mimotope. The synthetic peptides corresponding to the isolated phagotopes showed a CD4-dependent reactivity with gp120 of a primary, m-tropic HIV-1 isolate. Thus reactivity of antibodies raised to CCR5 against phage-displayed peptides defined mimotopes that reflect binding sites for these antibodies and reveal a part of the gp120 binding sites on CCR5.
Resumo:
Introduction: Statins alone often do not reduce LDL cholesterol levels sufficiently to given maximum cardiovascular benefit. Thus, additional drugs are required to reduce the levels of LDL cholesterol. Monoclonal antibodies to PCSK9 have recently been shown to decrease LDL cholesterol, but it is not known whether they improve cardiovascular outcomes. Areas covered: Evaluation of two clinical trials reporting cardiovascular outcomes with antibodies to PCSK9; the OSLER extension with evolocumab and the ODYSSEY LONG TERM trial with alirocumab. Expert opinion: In OSLER and ODYSSEY LONG TERM, there were very few cardiovascular outcomes, but the trials do suggest that evolocumab and alirocumab may reduce these outcomes. However, there are also some safety concerns with both of these antibodies. Large clinical outcome trials are underway with both evolocumab and alirocumab, which will probably clarify both the safety concerns and any cardiovascular benefits with these antibodies. In our opinion, these antibodies may be suitable for use in subjects with familial hypercholesterolemia, who are uncontrolled with their present medications, provided intensive safety and cardiovascular monitoring is being undertaken. However, evolocumab and alirocumab should be used with caution in other subjects, until outcome studies in higher numbers of subjects, have shown acceptable safety and cardiovascular profiles.