942 resultados para monitoring control system
Resumo:
Acoplamiento del sistema informático de control de piso de producción (SFS) con el conjunto de equipos de fabricación (SPE) es una tarea compleja. Tal acoplamiento involucra estándares abiertos y propietarios, tecnologías de información y comunicación, entre otras herramientas y técnicas. Debido a la turbulencia de mercados, ya sea soluciones personalizadas o soluciones basadas en estándares eventualmente requieren un esfuerzo considerable de adaptación. El concepto de acoplamiento débil ha sido identificado en la comunidad de diseño organizacional como soporte para la sobrevivencia de la organización. Su presencia reduce la resistencia de la organización a cambios en el ambiente. En este artículo los resultados obtenidos por la comunidad de diseño organizacional son identificados, traducidos y organizados para apoyar en la solución del problema de integración SFS-SPE. Un modelo clásico de acoplamiento débil, desarrollado por la comunidad de estudios de diseño organizacional, es resumido y trasladado al área de interés. Los aspectos claves son identificados para utilizarse como promotores del acoplamiento débil entre SFS-SPE, y presentados en forma de esquema de referencia. Así mismo, este esquema de referencia es presentado como base para el diseño e implementación de una solución genérica de acoplamiento o marco de trabajo (framework) de acoplamiento, a incluir como etapa de acoplamiento débil entre SFS y SPE. Un ejemplo de validación con varios conjuntos de equipos de fabricación, usando diferentes medios físicos de comunicación, comandos de controlador, lenguajes de programación de equipos y protocolos de comunicación es presentado, mostrando un nivel aceptable de autonomía del SFS. = Coupling shop floor software system (SFS) with the set of production equipment (SPE) becomes a complex task. It involves open and proprietary standards, information and communication technologies among other tools and techniques. Due to market turbulence, either custom solutions or standards based solutions eventually require a considerable effort of adaptation. Loose coupling concept has been identified in the organizational design community as a compensator for organization survival. Its presence reduces organization reaction to environment changes. In this paper the results obtained by the organizational de sign community are identified, translated and organized to support the SFS-SPE integration problem solution. A classical loose coupling model developed by organizational studies community is abstracted and translated to the area of interest. Key aspects are identified to be used as promoters of SFS-SPE loose coupling and presented in a form of a reference scheme. Furthermore, this reference scheme is proposed here as a basis for the design and implementation of a generic coupling solution or coupling framework, that is included as a loose coupling stage between SFS and SPE. A validation example with various sets of manufacturing equipment, using different physical communication media, controller commands, programming languages and wire protocols is presented, showing an acceptable level of autonomy gained by the SFS.
Resumo:
MEGARA (Multi-Espectrografo en GTC de Alta Resolucion para Astronomia) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4 m telescope in La Palma. The MEGARA Control System will provide the capabilities to move the different mechanisms of the instrument, to readout the data from the detector controller and the necessary routines for the Inspector Panels, the MEGARA Observing Preparation Software Suite, the Data Factory and the Sequencer strategies.
Resumo:
For many years, humans and machines have shared the same physical space. To facilitate their interaction with humans, their social integration and for more rational behavior has been sought that the robots demonstrate human-like behavior. For this it is necessary to understand how human behavior is generated, discuss what tasks are performed and how relate to themselves, for subsequent implementation in robots. In this paper, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this work has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots.
Resumo:
Humans and machines have shared the same physical space for many years. To share the same space, we want the robots to behave like human beings. This will facilitate their social integration, their interaction with humans and create an intelligent behavior. To achieve this goal, we need to understand how human behavior is generated, analyze tasks running our nerves and how they relate to them. Then and only then can we implement these mechanisms in robotic beings. In this study, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this study has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.