931 resultados para molecular evolution
Resumo:
Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt’s bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4–8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt’s bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt’s bat.
Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes
Resumo:
Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.
Resumo:
Genetically diverse RNA viruses like dengue viruses (DENVs)segregate into multiple, genetically distinct, lineages that temporally arise and disappear on a regular basis. Lineage turnover may occur through multiple processes such as, stochastic or due to variations in fitness. To determine the variation of fitness, we measured the distribution of fitness within DENV populations and correlated it with lineage extinction and replacement. The fitness of most members within a population proved lower than the aggregate fitness of populations from which they were drawn, but lineage replacement events were not associated with changes in the distribution of fitness. These data provide insights into variations in fitness of DENV populations, extending our understanding of the complexity between members of individual populations.
Resumo:
Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.
Resumo:
Phylogeographic patterns and population structure of the pelagic Indian mackerel, Rastrelliger kanagurta were examined in 23 populations collected from the Indonesian-Malaysian Archipelago (IMA) and the West Indian Ocean (WIO). Despite the vast expanse of the IMA and neighbouring seas, no evidence for geographical structure was evident. An indication that R. kanagurta populations across this region are essentially panmictic. This study also revealed that historical isolation was insufficient for R. kanagurta to attain migration drift equilibrium. Two distinct subpopulations were detected between the WIO and the IMA (and adjacent populations); interpopulation genetic variation was high. A plausible explanation for the genetic differentiation observed between the IMA and WIO regions suggest historical isolation as a result of fluctuations in sea levels during the late Pleistocene. This occurrence resulted in the evolution of a phylogeographic break for this species to the north of the Andaman Sea.
Resumo:
Recent research has identified marine molluscs as an excellent source of omega-3 long-chain polyunsaturated fatty acids (lcPUFAs), based on their potential for endogenous synthesis of lcPUFAs. In this study we generated a representative list of fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) genes from major orders of Phylum Mollusca, through the interrogation of transcriptome and genome sequences, and various publicly available databases. We have identified novel and uncharacterised Fad and Elovl sequences in the following species: Anadara trapezia, Nerita albicilla, Nerita melanotragus, Crassostrea gigas, Lottia gigantea, Aplysia californica, Loligo pealeii and Chlamys farreri. Based on alignments of translated protein sequences of Fad and Elovl genes, the haeme binding motif and histidine boxes of Fad proteins, and the histidine box and seventeen important amino acids in Elovl proteins, were highly conserved. Phylogenetic analysis of aligned reference sequences was used to reconstruct the evolutionary relationships for Fad and Elovl genes separately. Multiple, well resolved clades for both the Fad and Elovl sequences were observed, suggesting that repeated rounds of gene duplication best explain the distribution of Fad and Elovl proteins across the major orders of molluscs. For Elovl sequences, one clade contained the functionally characterised Elovl5 proteins, while another clade contained proteins hypothesised to have Elovl4 function. Additional well resolved clades consisted only of uncharacterised Elovl sequences. One clade from the Fad phylogeny contained only uncharacterised proteins, while the other clade contained functionally characterised delta-5 desaturase proteins. The discovery of an uncharacterised Fad clade is particularly interesting as these divergent proteins may have novel functions. Overall, this paper presents a number of novel Fad and Elovl genes suggesting that many mollusc groups possess most of the required enzymes for the synthesis of lcPUFAs.
Resumo:
The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.
Resumo:
Background The obligate intracellular bacterium Chlamydia pneumoniae is a common respiratory pathogen, which has been found in a range of hosts including humans, marsupials and amphibians. Whole genome comparisons of human C. pneumoniae have previously highlighted a highly conserved nucleotide sequence, with minor but key polymorphisms and additional coding capacity when human and animal strains are compared. Results In this study, we sequenced three Australian human C. pneumoniae strains, two of which were isolated from patients in remote indigenous communities, and compared them to all available C. pneumoniae genomes. Our study demonstrated a phylogenetically distinct human C. pneumoniae clade containing the two indigenous Australian strains, with estimates that the most recent common ancestor of these strains predates the arrival of European settlers to Australia. We describe several polymorphisms characteristic to these strains, some of which are similar in sequence to animal C. pneumoniae strains, as well as evidence to suggest that several recombination events have shaped these distinct strains. Conclusions Our study reveals a greater sequence diversity amongst both human and animal C. pneumoniae strains, and suggests that a wider range of strains may be circulating in the human population than current sampling indicates.
Resumo:
The complete genome of the baker's yeast S. cerevisiae was analyzed for the presence of polypurine/polypyrimidine (poly[pu/py]) repeats and their occurrences were classified on the basis of their location within and outside open reading frames (ORFs). The analysis reveals that such sequence motifs are present abundantly both in coding as well as noncoding regions. Clear positional preferences are seen when these tracts occur in noncoding regions. These motifs appear to occur predominantly at a unit nucleosomal length both upstream and downstream of ORFs. Moreover, there is a biased distribution of polypurines in the coding strands when these motifs occur within open reading frames. The significance of the biased distribution is discussed with reference to the occurrence of these motifs in other known mRNA sequences and expressed sequence tags. A model for cis regulation of gene expression is proposed based on the ability of these motifs to form an intermolecular triple helix structure when present within the coding region and/or to modulate nucleosome positioning via enhanced histone affinity when present outside coding regions.
Resumo:
Plant seeds contain a large number of protease inhibitors of animal, fungal, and bacterial origin. One of the well-studied families of these inhibitors is the Bowman-Birk family(BBI). The BBIs from dicotyledonous seeds are 8K, double-headed proteins. In contrast, the 8K inhibitors from monocotyledonous seeds are single headed. Monocots also have a 16K, double-headed inhibitor. We have determined the primary structure of a Bowman-Birk inhibitor from a dicot, horsegram, by sequential edman analysis of the intact protein and peptides derived from enzymatic and chemical cleavage. The 76-residue-long inhibitor is very similar to that ofMacrotyloma axillare. An analysis of this inhibitor along with 26 other Bowman-Birk inhibitor domains (MW 8K) available in the SWISSPROT databank revealed that the proteins from monocots and dicots belong to related but distinct families. Inhibitors from monocots show larger variation in sequence. Sequence comparison shows that a crucial disulphide which connects the amino and carboxy termini of the active site loop is lost in monocots. The loss of a reactive site in monocots seems to be correlated to this. However, it appears that this disulphide is not absolutely essential for retention of inhibitory function. Our analysis suggests that gene duplication leading to a 16K inhibitor in monocots has occurred, probably after the divergence of monocots and dicots, and also after the loss of second reactive site in monocots.
Resumo:
Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.
Resumo:
Amino acid sequences of proteinaceous proteinase inhibitors have been extensively analysed for deriving information regarding the molecular evolution and functional relationship of these proteins. These sequences have been grouped into several well defined families. It was found that the phylogeny constructed with the sequences corresponding to the exposed loop responsible for inhibition has several branches that resemble those obtained from comparisons using the entire sequence. The major branches of the unrooted tree corresponded to the families to which the inhibitors belonged. Further branching is related to the enzyme specificity of the inhibitor. Examination of the active site loop sequences of trypsin inhibitors revealed that there are strong preferences for specific amino acids at different positions of the loop. These preferences are inhibitor class specific. Inhibitors active against more than one enzyme occur within a class and confirm to class specific sequence in their loops. Hence, only a few positions in the loop seem to determine the specificity. The ability to inhibit the same enzyme by inhibitors that belong to different classes appears to be a result of convergent evolution
Resumo:
We aimed to study the selective pressures interacting on SLC45A2 to investigate the interplay between selection and susceptibility to disease. Thus, we enrolled 500 volunteers from a geographically limited population (Basques from the North of Spain) and by resequencing the whole coding region and intron 5 of the 34 most and the 34 least pigmented individuals according to the reflectance distribution, we observed that the polymorphism Leu374Phe (L374F, rs16891982) was statistically associated with skin color variability within this sample. In particular, allele 374F was significantly more frequent among the individuals with lighter skin. Further genotyping an independent set of 558 individuals of a geographically wider population with known ancestry in the Spanish population also revealed that the frequency of L374F was significantly correlated with the incident UV radiation intensity. Selection tests suggest that allele 374F is being positively selected in South Europeans, thus indicating that depigmentation is an adaptive process. Interestingly, by genotyping 119 melanoma samples, we show that this variant is also associated with an increased susceptibility to melanoma in our populations. The ultimate driving force for this adaptation is unknown, but it is compatible with the vitamin D hypothesis. This shows that molecular evolution analysis can be used as a useful technology to predict phenotypic and biomedical consequences in humans.
Resumo:
半寄生植物马先蒿属(Pedicularis)是列当科(Orobanchaceae)中最大的属,也是北温带被子植物最大的属之一。该属至少有500种植物,主要分布在北半球的高山、亚高山地区或高纬度地区,其中超过一半的种类分布在东喜马拉雅至横断山区,构成该地区高山植物区系的主要成分。马先蒿属花部器官的强烈分化程度在被子植物中极为罕见,导致这种分化发生的机制仍是难解之谜。马先蒿属下系统非常混乱,迄今为止该属属下分类系统不下10个。关于该属的起源时间、地点及迁移散布过程只是基于一些间接证据的推测。针对以上问题,本文通过大量的标本查阅、野外考察、传粉生物学观察以及分子系统学研究,得出了一些初步的结果。 1.形态学 通过大量的野外考察及标本观察,发现马先蒿属花部器官变异非常复杂,是区分近缘种的主要性状依据,但是花部器官存在明显的平行进化现象,不适合作为划分群、组等属下高级分类单元的主要依据;而营养性状比较保守,可作为划分群、组的主要依据。通过考证,发现直管群万叶系的德钦马先蒿(P. deqinensis)实属轮枝群纤细系多枝马先蒿(P. ramosissima)的异名。同时发现一个新种,即折喙马先蒿(P. inflexirostris),该种属于直管群的万叶系。 2.传粉生物学 对27种马先蒿的昆虫传粉行为进行了初步的观察。发现横断山区的马先蒿主要靠熊蜂进行有效的传粉。昆虫的传粉方式有两种,即背触式(Nototribic)和腹触式(Sternotribic)。不同花冠类型的马先蒿属植物中,昆虫的传粉方式也有所区别。对短管、无喙、无花蜜的马先蒿,昆虫主要以腹触式完成传粉;对短管、无喙、具花蜜的马先蒿,昆虫既可以通过背触式也可以通过腹触式完成传粉;而对短管、具喙和长管、具喙的马先蒿,昆虫都以腹触式完成传粉。没有发现鳞翅目的昆虫访问长管类型的马先蒿。不同花冠类型传粉方式的不同说明马先蒿花部形态结构和传粉媒介的行为之间存在协同进化关系。 3.核rDNA ITS分析 对12个群的42种马先蒿的核rDNA ITS序列进行了分析。基于ITS序列构建的基因树和经典的属下分类系统很不一致,基因树上的大部分分支和经典系统中的高级分类单元不相吻合,原因可能是马先蒿属花部器官发生了平行进化,而经典的分类系统过于权重这些花部形态性状。此外,发现在横断山区这一相对狭小的地域范围内,nrDNA ITS序列在马先蒿种间存在很大差异。造成此差异的原因可能有两个方面:一方面是马先蒿属的起源和分化的时间可能较早,不同的支系从其他地域先后多次迁入横断山区;另一方面可能是由于半寄生植物马先蒿中快速的分子进化造成的。 4.叶绿体基因组trnT-F区序列分析 对8个群的11种马先蒿的trnT-F区序列进行了分析,发现种间存在大量的插入/缺失序列,其中甘肃马先蒿(P. kansuensis)和大王马先蒿(P. rex)分别在trnT-trnL(UAA)和trnL–trnF基因间区发生了长达228bp和303bp碱基序列缺失,说明半寄生植物的叶绿体基因组也可能存在大量基因丢失现象。 5. GLOBOSA-like MADS-box基因的研究 对11种马先蒿属植物(8个群)中控制花瓣发育的GLOBOSA(PGLO)基因的部分片段进行了分离、克隆和测序,发现该基因在种间发生了明显的分化,但是碱基的变异主要发生在非编码区或非结构域,基因的同义突变率远高于非同义突变率,说明PGLO基因的进化受到强烈的功能制约。PGLO基因在马先蒿种间的明显分化表明:在辐射分化类群中,调节基因也可能发生了快速分化。对11种马先蒿属植物的PGLO基因树、nrDNA ITS基因树以及trnT-F基因树的比较发现:三个树图在结构上既有一致、也有相互矛盾之处,推测可能是因为这些基因具有不同的遗传体系或经历了不同的进化历史所致,另一方面说明GLOBOSA基因在探讨近缘类群系统发育关系方面的价值有待进一步验证。
Resumo:
松科植物的核基因组十分庞大,基因常形成复杂的基因家族,核rDNA ITS 区在基因组内和基因组间存在广泛的长度和序列变异,但染色体数目和核型却高度保守,几乎均为二倍体(2n=24),与被子植物频繁的多倍化和高度均一的ITS区形成鲜明对比;叶绿体、线粒体和核基因组分别为父系、母系及双亲遗传,这种独特的遗传体系组合为系统发育重建研究提供了便利条件。因此,松科植物不仅是阐明基因树/物种树这一理论问题的理想试材,而且是基因和基因组进化及核rDNA致同进化机制研究的好材料。此外,松科植物的进化历史悠久,很多类群经历了多次重大的地质历史事件,并呈各种间断分布格局,其生物地理学问题受到广泛关注。本文对落叶松属所有物种(L. lyallii除外)和大部分变种的叶绿体基因组trnT-trnF区、低拷贝核4CL基因家族 (4-香豆酸辅酶A连接酶基因)及多拷贝核rDNA ITS区进行了序列分析,重建了该属的系统发育并揭示了其地理分布格局的形成过程,同时基于克隆和基因谱系分析,探讨了核4CL和rDNA ITS这两个基因家族的进化式样及规律。 1. 叶绿体trnT-trnF区和核rDNA ITS区的研究结果表明:落叶松属的种间遗传分化程度很低,北美的种类构成一个单系分支,并为欧亚种类的姐妹群。短苞鳞的欧亚落叶松组和长苞鳞的欧亚红杉组之间的分化较早,接近欧亚和北美种类间的分化时间。换句话说,苞鳞长短的分化在落叶松属中至少发生过两次,其中一次在落叶松属分化的初期,另一次在北美的种类中。结合化石、地史及气候资料,我们推测:落叶松属的共同祖先通过白令陆桥扩散,并形成欧亚和北美两支,然后在不同的板块上独立进化。落叶松组的泛北极分布是冰期后的回迁形成的,而红杉组的物种在第三纪全球气温降低时向南迁移,进而形成东亚-北美间断分布,特别是欧亚红杉组的祖先曾伴随青藏高原的隆升而发生辐射分化。 2. 在落叶松属4CL基因家族的研究中共获得44个差异的克隆,除华北落叶松外,其它种类均含2-4个成员。系统发育分析表明: 4CL基因频繁发生重复/丢失,并导致谱系拣选。该基因在落叶松属的共同祖先中发生一次重复,形成4clA和4clB,4clA再次发生基因重复形成4clA1和4clA2。重复产生的这两对并系基因拷贝在进化速率上呈显著差异,其中一个拷贝的进化速率明显加快,可能与进化制约的减弱或功能分化有关。结合其它核基因的研究结果,我们推测频繁的基因重复/丢失可能是形成和维持松科植物庞大核基因组的重要机制之一。 3. 对落叶松属101个nrDNA ITS克隆进行了序列及分子进化分析,发现极少数克隆存在较大的长度及(或)序列变异,并可能为假基因或重组体,其它克隆间的序列分化水平较低。因而,落叶松属核rDNA的致同进化速率比松科中两个古老的属(松属和云杉属)快。该致同进化速率的加快可能与落叶松属年轻的进化历史及染色体上较少的rDNA位点数目有关。由于一些特异克隆含嵌合序列及极高的序列变异,推测它们可能来源于物种进化过程中染色体重排形成的小位点(minor loci)或为孤独基因(orphons)。此外,我们发现nrDNA ITS克隆的分布式样与落叶松属的分化及地理分布格局的形成有密切关系:在欧亚红杉组中,克隆常按分类群(物种或变种)形成单系分支,表明这些类群的分化曾伴随着强烈的nrDNA ITS奠基者效应;相反,在欧亚落叶松组中,所有物种的克隆均混杂在一起,说明这些物种的分化时间较晚或在冰期后回迁的过程中曾发生频繁的种间基因交流。