944 resultados para models for teaching
Resumo:
This study examines the impact of a large-scale UK-based teacher development programme on innovation and change in English language education in Western China within a knowledge management (KM) framework. Questionnaire data were collected from 229 returnee teachers in 15 cohorts. Follow-up interviews and focus groups were conducted with former participants, middle and senior managers, and teachers who had not participated in the UK programme. The results showed evidence of knowledge creation and amplification at individual, group and inter-organizational levels. However, the present study also identified knowledge creation potential through the more effective organization of follow-up at the national level, particularly for the returnee teachers. It is argued that the KM framework might offer a promising alternative to existing models and metaphors of Continuing Professional Development (CPD).
Resumo:
This paper describes the development of a new approach to the use of ICT for the teaching of courses in the interpretation and evaluation of evidence. It is based on ideas developed for the teaching of science to school children, in particular the importance of models and qualitative reasoning skills. In the first part, we make an analysis of the basis of current research into “evidence scholarship” and the demands such a system would have to meet. In the second part, we introduce the details of such a system that we developed initially to assist police in the interpretation of evidence.
Resumo:
Background: The identification of patterns of inappropriate antimicrobial prescriptions in hospitals contributes to the improvement of antimicrobial stewardship programs (ASP). Methods: We conducted a cross-sectional study to identify predictors of inappropriateness in requests for parenteral antimicrobials (RPAs) in a teaching hospital with 285 beds. We reviewed 25% of RPAs for therapeutic purposes from y 2005. Appropriateness was evaluated according to current guidelines for antimicrobial therapy. We assessed predictors of inappropriateness through univariate and multivariate models. RPAs classified as 'appropriate' or 'probably appropriate' were selected as controls. Case groups comprised inappropriate RPAs, either in general or for specific errors. Results: Nine hundred and sixty-three RPAs were evaluated, 34.6% of which were considered inappropriate. In the multivariate analysis, general predictors of inappropriateness were: prescription on week-ends/holidays (odds ratio (OR) 1.67, 95% confidence interval (CI) 1.20-2.28, p = 0.002), patient in the intensive care unit (OR 1.57, 95% CI 1.11-2.23, p = 0.01), peritoneal infection (OR 2.15, 95% CI 1.27-3.65, p = 0.004), urinary tract infection (OR 1.89, 95% CI 1.25 -2.87, p = 0.01), combination therapy with 2 or more antimicrobials (OR 1.72, 95% CI 1.15-2.57, p = 0.008) and prescriptions including penicillins (OR 2.12, 95% CI 1.39-3.25, p = 0.001) or 1(st) generation cephalosporins (OR 1.74, 95% CI 1.01-3.00, p = 0.048). Previous consultation with an infectious diseases (ID) specialist had a protective effect against inappropriate prescription (OR 0.34, 95% CI 0.24-0.50, p < 0.001). Factors independently associated with specific prescription errors varied. However, consultation with an ID specialist was protective against both unnecessary antimicrobial use (OR 0.04, 95% CI 0.01-0.26, p = 0.001) and requests for agents with an insufficient antimicrobial spectrum (OR 0.14, 95% CI 0.03-0.30, p = 0.01). Conclusions: Our results demonstrate the importance of previous consultation with an ID specialist in assuring the quality of prescriptions. Also, they highlight prescription patterns that should be approached by ASP policies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of the Dental Sculpture and Anatomy discipline is to introduce undergraduate students to the study of the anatomic and morphological characteristics of permanent and primary human dentition, through classes, books and cognitive and psychomotor activities. This discipline supports the teaching of specific knowledge necessary for a more extensive education, involving interdisciplinarity as a means of knowledge exchange among several areas of dentistry, to achieve comprehensive professional education. Students must recognize the dental morphology from samples of preserved teeth, and reproduce the morphology through three-dimensional models made of stone or wax blocks. In this article, the authors describe the process for producing teeth collars and macro dental models made of stone, their importance and benefits of utilization. The purpose of the study was to encourage the teaching of Dental Sculpture and Anatomy toundergraduate students of the Bauru School of Dentistry, University of Sao Paulo, through activities that would associate theory, practice and the development of manual skills.
Resumo:
This mixed methods concurrent triangulation design study was predicated upon two models that advocated a connection between teaching presence and perceived learning: the Community of Inquiry Model of Online Learning developed by Garrison, Anderson, and Archer (2000); and the Online Interaction Learning Model by Benbunan-Fich, Hiltz, and Harasim (2005). The objective was to learn how teaching presence impacted students’ perceptions of learning and sense of community in intensive online distance education courses developed and taught by instructors at a regional comprehensive university. In the quantitative phase online surveys collected relevant data from participating students (N = 397) and selected instructional faculty (N = 32) during the second week of a three-week Winter Term. Student information included: demographics such as age, gender, employment status, and distance from campus; perceptions of teaching presence; sense of community; perceived learning; course length; and course type. The students claimed having positive relationships between teaching presence, perceived learning, and sense of community. The instructors showed similar positive relationships with no significant differences when the student and instructor data were compared. The qualitative phase consisted of interviews with 12 instructors who had completed the online survey and replied to all of the open-response questions. The two phases were integrated using a matrix generation, and the analysis allowed for conclusions regarding teaching presence, perceived learning, and sense of community. The findings were equivocal with regard to satisfaction with course length and the relative importance of the teaching presence components. A model was provided depicting relationships between and among teaching presence components, perceived learning, and sense of community in intensive online courses.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
Software is available, which simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. These dynamic models are based upon equations derived from the transport concepts such as electromigration, diffusion, electroosmosis and imposed hydrodynamic buffer flow that are applied to user-specified initial distributions of analytes and electrolytes. They are able to predict the evolution of electrolyte systems together with associated properties such as pH and conductivity profiles and are as such the most versatile tool to explore the fundamentals of electrokinetic separations and analyses. In addition to revealing the detailed mechanisms of fundamental phenomena that occur in electrophoretic separations, dynamic simulations are useful for educational purposes. This review includes a list of current high-resolution simulators, information on how a simulation is performed, simulation examples for zone electrophoresis, ITP, IEF and EKC and a comprehensive discussion of the applications and achievements.
Resumo:
Vascular surgical training currently has to cope with various challenges, including restrictions on work hours, significant reduction of open surgical training cases in many countries, an increasing diversity of open and endovascular procedures, and distinct expectations by trainees. Even more important, patients and the public no longer accept a "learning by doing" training philosophy that leaves the learning curve on the patient's side. The Vascular International (VI) Foundation and School aims to overcome these obstacles by training conventional vascular and endovascular techniques before they are applied on patients. To achieve largely realistic training conditions, lifelike pulsatile models with exchangeable synthetic arterial inlays were created to practice carotid endarterectomy and patch plasty, open abdominal aortic aneurysm surgery, and peripheral bypass surgery, as well as for endovascular procedures, including endovascular aneurysm repair, thoracic endovascular aortic repair, peripheral balloon dilatation, and stenting. All models are equipped with a small pressure pump inside to create pulsatile flow conditions with variable peak pressures of ~90 mm Hg. The VI course schedule consists of a series of 2-hour modules teaching different open or endovascular procedures step-by-step in a standardized fashion. Trainees practice in pairs with continuous supervision and intensive advice provided by highly experienced vascular surgical trainers (trainer-to-trainee ratio is 1:4). Several evaluations of these courses show that tutor-assisted training on lifelike models in an educational-centered and motivated environment is associated with a significant increase of general and specific vascular surgical technical competence within a short period of time. Future studies should evaluate whether these benefits positively influence the future learning curve of vascular surgical trainees and clarify to what extent sophisticated models are useful to assess the level of technical skills of vascular surgical residents at national or international board examinations. This article gives an overview of our experiences of >20 years of practical training of beginners and advanced vascular surgeons using lifelike pulsatile vascular surgical training models.
Resumo:
PDP++ is a freely available, open source software package designed to support the development, simulation, and analysis of research-grade connectionist models of cognitive processes. It supports most popular parallel distributed processing paradigms and artificial neural network architectures, and it also provides an implementation of the LEABRA computational cognitive neuroscience framework. Models are typically constructed and examined using the PDP++ graphical user interface, but the system may also be extended through the incorporation of user-written C++ code. This article briefly reviews the features of PDP++, focusing on its utility for teaching cognitive modeling concepts and skills to university undergraduate and graduate students. An informal evaluation of the software as a pedagogical tool is provided, based on the author’s classroom experiences at three research universities and several conference-hosted tutorials.
Resumo:
Simulation tools aid in learning neuroscience by providing the student with an interactive environment to carry out simulated experiments and test hypotheses. The field of neuroscience is well suited for the use of simulation tools since nerve cell signaling can be described by mathematical equations and solved by computer. Neural signaling entails the propagation of electrical current along nerve membrane and transmission to neighboring neurons through synaptic connections. Action potentials and synaptic transmission can be simulated and results displayed for visualization and analysis. The neurosimulator SNNAP (Simulator for Neural Networks and Action Potentials) is a simulation environment that provides users with editors for model building, simulator engine and visual display editor. This paper presents several modeling examples that illustrate some of the capabilities and features of SNNAP. First, the Hodgkin-Huxley (HH) model is presented and the threshold phenomenon is illustrated. Second, small neural networks are described with HH models using various synaptic connections available with SNNAP. Synaptic connections may be modulated through facilitation or depression with SNNAP. A study of vesicle pool dynamics is presented using an AMPA receptor model. Finally, a central pattern generator model of the Aplysia feeding circuit is illustrated as an example of a complex network that may be studied with SNNAP. Simulation code is provided for each case study described and tasks are suggested for further investigation.
Resumo:
The purpose of this paper is to characterize the configurations of the families that live in contexts of social exclusion; provide conceptualizations of their operation mode; highlight the formative effects that neighborhood interdisciplinary practices with such families produce in the just graduated psychologists, included on the Extension Program. We wish to contribute to produce systematic knowledge that can account for such family configurations as potential receiver of integration policies. We are also interested on transferring the approach to diversity in the training of young professionals, in order not to be regarded as a deviation from ideal models, but as an expression of different strategies built by members of a community, to resolve children breeding and to bear their existences. This work is the result about reflections on productions inside a research fellowship: The complexities that takes the breeding in families who lives in a social exclusion situation; researches about breeding, carried out from signature Developmental Psychology II, and from de interdisciplinary work with psychologically assisted families in twelve suburbs of the city of La Plata (University Extension Program "Free Legal Offices" (Convention between Law and Social Sciences and Psychology Faculties, U.N.L.P.). From a qualitative methodology and an interdisciplinary participation, the results have arrive at the characterization and proposed conceptualizations of the included families and at the same time determine the benefits that brings with the work that articulates research and extension activities for the training of advanced students and young graduates.
Resumo:
The purpose of this paper is to characterize the configurations of the families that live in contexts of social exclusion; provide conceptualizations of their operation mode; highlight the formative effects that neighborhood interdisciplinary practices with such families produce in the just graduated psychologists, included on the Extension Program. We wish to contribute to produce systematic knowledge that can account for such family configurations as potential receiver of integration policies. We are also interested on transferring the approach to diversity in the training of young professionals, in order not to be regarded as a deviation from ideal models, but as an expression of different strategies built by members of a community, to resolve children breeding and to bear their existences. This work is the result about reflections on productions inside a research fellowship: The complexities that takes the breeding in families who lives in a social exclusion situation; researches about breeding, carried out from signature Developmental Psychology II, and from de interdisciplinary work with psychologically assisted families in twelve suburbs of the city of La Plata (University Extension Program "Free Legal Offices" (Convention between Law and Social Sciences and Psychology Faculties, U.N.L.P.). From a qualitative methodology and an interdisciplinary participation, the results have arrive at the characterization and proposed conceptualizations of the included families and at the same time determine the benefits that brings with the work that articulates research and extension activities for the training of advanced students and young graduates.
Resumo:
The purpose of this paper is to characterize the configurations of the families that live in contexts of social exclusion; provide conceptualizations of their operation mode; highlight the formative effects that neighborhood interdisciplinary practices with such families produce in the just graduated psychologists, included on the Extension Program. We wish to contribute to produce systematic knowledge that can account for such family configurations as potential receiver of integration policies. We are also interested on transferring the approach to diversity in the training of young professionals, in order not to be regarded as a deviation from ideal models, but as an expression of different strategies built by members of a community, to resolve children breeding and to bear their existences. This work is the result about reflections on productions inside a research fellowship: The complexities that takes the breeding in families who lives in a social exclusion situation; researches about breeding, carried out from signature Developmental Psychology II, and from de interdisciplinary work with psychologically assisted families in twelve suburbs of the city of La Plata (University Extension Program "Free Legal Offices" (Convention between Law and Social Sciences and Psychology Faculties, U.N.L.P.). From a qualitative methodology and an interdisciplinary participation, the results have arrive at the characterization and proposed conceptualizations of the included families and at the same time determine the benefits that brings with the work that articulates research and extension activities for the training of advanced students and young graduates.