923 resultados para model-based reasoning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software is a key component in many of our devices and products that we use every day. Most customers demand not only that their devices should function as expected but also that the software should be of high quality, reliable, fault tolerant, efficient, etc. In short, it is not enough that a calculator gives the correct result of a calculation, we want the result instantly, in the right form, with minimal use of battery, etc. One of the key aspects for succeeding in today's industry is delivering high quality. In most software development projects, high-quality software is achieved by rigorous testing and good quality assurance practices. However, today, customers are asking for these high quality software products at an ever-increasing pace. This leaves the companies with less time for development. Software testing is an expensive activity, because it requires much manual work. Testing, debugging, and verification are estimated to consume 50 to 75 per cent of the total development cost of complex software projects. Further, the most expensive software defects are those which have to be fixed after the product is released. One of the main challenges in software development is reducing the associated cost and time of software testing without sacrificing the quality of the developed software. It is often not enough to only demonstrate that a piece of software is functioning correctly. Usually, many other aspects of the software, such as performance, security, scalability, usability, etc., need also to be verified. Testing these aspects of the software is traditionally referred to as nonfunctional testing. One of the major challenges with non-functional testing is that it is usually carried out at the end of the software development process when most of the functionality is implemented. This is due to the fact that non-functional aspects, such as performance or security, apply to the software as a whole. In this thesis, we study the use of model-based testing. We present approaches to automatically generate tests from behavioral models for solving some of these challenges. We show that model-based testing is not only applicable to functional testing but also to non-functional testing. In its simplest form, performance testing is performed by executing multiple test sequences at once while observing the software in terms of responsiveness and stability, rather than the output. The main contribution of the thesis is a coherent model-based testing approach for testing functional and performance related issues in software systems. We show how we go from system models, expressed in the Unified Modeling Language, to test cases and back to models again. The system requirements are traced throughout the entire testing process. Requirements traceability facilitates finding faults in the design and implementation of the software. In the research field of model-based testing, many new proposed approaches suffer from poor or the lack of tool support. Therefore, the second contribution of this thesis is proper tool support for the proposed approach that is integrated with leading industry tools. We o er independent tools, tools that are integrated with other industry leading tools, and complete tool-chains when necessary. Many model-based testing approaches proposed by the research community suffer from poor empirical validation in an industrial context. In order to demonstrate the applicability of our proposed approach, we apply our research to several systems, including industrial ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we review the advances of monocular model-based tracking for last ten years period until 2014. In 2005, Lepetit, et. al, [19] reviewed the status of monocular model based rigid body tracking. Since then, direct 3D tracking has become quite popular research area, but monocular model-based tracking should still not be forgotten. We mainly focus on tracking, which could be applied to aug- mented reality, but also some other applications are covered. Given the wide subject area this paper tries to give a broad view on the research that has been conducted, giving the reader an introduction to the different disciplines that are tightly related to model-based tracking. The work has been conducted by searching through well known academic search databases in a systematic manner, and by selecting certain publications for closer examination. We analyze the results by dividing the found papers into different categories by their way of implementation. The issues which have not yet been solved are discussed. We also discuss on emerging model-based methods such as fusing different types of features and region-based pose estimation which could show the way for future research in this subject.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over time the demand for quantitative portfolio management has increased among financial institutions but there is still a lack of practical tools. In 2008 EDHEC Risk and Asset Management Research Centre conducted a survey of European investment practices. It revealed that the majority of asset or fund management companies, pension funds and institutional investors do not use more sophisticated models to compensate the flaws of the Markowitz mean-variance portfolio optimization. Furthermore, tactical asset allocation managers employ a variety of methods to estimate return and risk of assets, but also need sophisticated portfolio management models to outperform their benchmarks. Recent development in portfolio management suggests that new innovations are slowly gaining ground, but still need to be studied carefully. This thesis tries to provide a practical tactical asset allocation (TAA) application to the Black–Litterman (B–L) approach and unbiased evaluation of B–L models’ qualities. Mean-variance framework, issues related to asset allocation decisions and return forecasting are examined carefully to uncover issues effecting active portfolio management. European fixed income data is employed in an empirical study that tries to reveal whether a B–L model based TAA portfolio is able outperform its strategic benchmark. The tactical asset allocation utilizes Vector Autoregressive (VAR) model to create return forecasts from lagged values of asset classes as well as economic variables. Sample data (31.12.1999–31.12.2012) is divided into two. In-sample data is used for calibrating a strategic portfolio and the out-of-sample period is for testing the tactical portfolio against the strategic benchmark. Results show that B–L model based tactical asset allocation outperforms the benchmark portfolio in terms of risk-adjusted return and mean excess return. The VAR-model is able to pick up the change in investor sentiment and the B–L model adjusts portfolio weights in a controlled manner. TAA portfolio shows promise especially in moderately shifting allocation to more risky assets while market is turning bullish, but without overweighting investments with high beta. Based on findings in thesis, Black–Litterman model offers a good platform for active asset managers to quantify their views on investments and implement their strategies. B–L model shows potential and offers interesting research avenues. However, success of tactical asset allocation is still highly dependent on the quality of input estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major concerns of scoliosis patients undergoing surgical treatment is the aesthetic aspect of the surgery outcome. It would be useful to predict the postoperative appearance of the patient trunk in the course of a surgery planning process in order to take into account the expectations of the patient. In this paper, we propose to use least squares support vector regression for the prediction of the postoperative trunk 3D shape after spine surgery for adolescent idiopathic scoliosis. Five dimensionality reduction techniques used in conjunction with the support vector machine are compared. The methods are evaluated in terms of their accuracy, based on the leave-one-out cross-validation performed on a database of 141 cases. The results indicate that the 3D shape predictions using a dimensionality reduction obtained by simultaneous decomposition of the predictors and response variables have the best accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes a methodology, a representation, and an implemented program for troubleshooting digital circuit boards at roughly the level of expertise one might expect in a human novice. Existing methods for model-based troubleshooting have not scaled up to deal with complex circuits, in part because traditional circuit models do not explicitly represent aspects of the device that troubleshooters would consider important. For complex devices the model of the target device should be constructed with the goal of troubleshooting explicitly in mind. Given that methodology, the principal contributions of the thesis are ways of representing complex circuits to help make troubleshooting feasible. Temporally coarse behavior descriptions are a particularly powerful simplification. Instantiating this idea for the circuit domain produces a vocabulary for describing digital signals. The vocabulary has a level of temporal detail sufficient to make useful predictions abut the response of the circuit while it remains coarse enough to make those predictions computationally tractable. Other contributions are principles for using these representations. Although not embodied in a program, these principles are sufficiently concrete that models can be constructed manually from existing circuit descriptions such as schematics, part specifications, and state diagrams. One such principle is that if there are components with particularly likely failure modes or failure modes in which their behavior is drastically simplified, this knowledge should be incorporated into the model. Further contributions include the solution of technical problems resulting from the use of explicit temporal representations and design descriptions with tangled hierarchies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a technique for finding pixelwise correspondences between two images by using models of objects of the same class to guide the search. The object models are 'learned' from example images (also called prototypes) of an object class. The models consist of a linear combination ofsprototypes. The flow fields giving pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel image of an object of the same class is matched to a model by minimizing an error between the novel image and the current guess for the closest modelsimage. Currently, the algorithm applies to line drawings of objects. An extension to real grey level images is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building robust recognition systems requires a careful understanding of the effects of error in sensed features. Error in these image features results in a region of uncertainty in the possible image location of each additional model feature. We present an accurate, analytic approximation for this uncertainty region when model poses are based on matching three image and model points, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. This result applies to objects that are fully three- dimensional, where past results considered only two-dimensional objects. Further, we introduce a linear programming algorithm to compute the uncertainty region when poses are based on any number of initial matches. Finally, we use these results to extend, from two-dimensional to three- dimensional objects, robust implementations of alignmentt interpretation- tree search, and ransformation clustering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the application of a PCA analysis on categorical data prior to diagnose a patients data set using a Case-Based Reasoning (CBR) system. The particularity is that the standard PCA techniques are designed to deal with numerical attributes, but our medical data set contains many categorical data and alternative methods as RS-PCA are required. Thus, we propose to hybridize RS-PCA (Regular Simplex PCA) and a simple CBR. Results show how the hybrid system produces similar results when diagnosing a medical data set, that the ones obtained when using the original attributes. These results are quite promising since they allow to diagnose with less computation effort and memory storage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSRACT This thesis focuses on the monitoring, fault detection and diagnosis of Wastewater Treatment Plants (WWTP), which are important fields of research for a wide range of engineering disciplines. The main objective is to evaluate and apply a novel artificial intelligent methodology based on situation assessment for monitoring and diagnosis of Sequencing Batch Reactor (SBR) operation. To this end, Multivariate Statistical Process Control (MSPC) in combination with Case-Based Reasoning (CBR) methodology was developed, which was evaluated on three different SBR (pilot and lab-scales) plants and validated on BSM1 plant layout.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective pursued in this thesis targets the development and systematization of a methodology that allows addressing management problems in the dynamic operation of Urban Wastewater Systems. The proposed methodology will suggest operational strategies that can improve the overall performance of the system under certain problematic situations through a model-based approach. The proposed methodology has three main steps: The first step includes the characterization and modeling of the case-study, the definition of scenarios, the evaluation criteria and the operational settings that can be manipulated to improve the system’s performance. In the second step, Monte Carlo simulations are launched to evaluate how the system performs for a wide range of operational settings combinations, and a global sensitivity analysis is conducted to rank the most influential operational settings. Finally, the third step consists on a screening methodology applying a multi-criteria analysis to select the best combinations of operational settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El test de circuits és una fase del procés de producció que cada vegada pren més importància quan es desenvolupa un nou producte. Les tècniques de test i diagnosi per a circuits digitals han estat desenvolupades i automatitzades amb èxit, mentre que aquest no és encara el cas dels circuits analògics. D'entre tots els mètodes proposats per diagnosticar circuits analògics els més utilitzats són els diccionaris de falles. En aquesta tesi se'n descriuen alguns, tot analitzant-ne els seus avantatges i inconvenients. Durant aquests últims anys, les tècniques d'Intel·ligència Artificial han esdevingut un dels camps de recerca més importants per a la diagnosi de falles. Aquesta tesi desenvolupa dues d'aquestes tècniques per tal de cobrir algunes de les mancances que presenten els diccionaris de falles. La primera proposta es basa en construir un sistema fuzzy com a eina per identificar. Els resultats obtinguts son força bons, ja que s'aconsegueix localitzar la falla en un elevat tant percent dels casos. Per altra banda, el percentatge d'encerts no és prou bo quan a més a més s'intenta esbrinar la desviació. Com que els diccionaris de falles es poden veure com una aproximació simplificada al Raonament Basat en Casos (CBR), la segona proposta fa una extensió dels diccionaris de falles cap a un sistema CBR. El propòsit no és donar una solució general del problema sinó contribuir amb una nova metodologia. Aquesta consisteix en millorar la diagnosis dels diccionaris de falles mitjançant l'addició i l'adaptació dels nous casos per tal d'esdevenir un sistema de Raonament Basat en Casos. Es descriu l'estructura de la base de casos així com les tasques d'extracció, de reutilització, de revisió i de retenció, fent èmfasi al procés d'aprenentatge. En el transcurs del text s'utilitzen diversos circuits per mostrar exemples dels mètodes de test descrits, però en particular el filtre biquadràtic és l'utilitzat per provar les metodologies plantejades, ja que és un dels benchmarks proposats en el context dels circuits analògics. Les falles considerades son paramètriques, permanents, independents i simples, encara que la metodologia pot ser fàcilment extrapolable per a la diagnosi de falles múltiples i catastròfiques. El mètode es centra en el test dels components passius, encara que també es podria extendre per a falles en els actius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach