992 resultados para mobile-immobile advection-dispersion equation
Resumo:
We consider a conservation law perturbed by a linear diffusion and a general form of non-positive dispersion. We prove the convergence of the corresponding solution to the entropy weak solution of the hyperbolic conservation law.
Resumo:
Since the majority of the population of the world lives in cities and that this number is expected to increase in the next years, one of the biggest challenges of the research is the determination of the risk deriving from high temperatures experienced in urban areas, together with improving responses to climate-related disasters, for example by introducing in the urban context vegetation or built infrastructures that can improve the air quality. In this work, we will investigate how different setups of the boundary and initial conditions set on an urban canyon generate different patterns of the dispersion of a pollutant. To do so we will exploit the low computational cost of Reynolds-Averaged Navier-Stokes (RANS) simulations to reproduce the dynamics of an infinite array of two-dimensional square urban canyons. A pollutant is released at the street level to mimic the presence of traffic. RANS simulations are run using the k-ɛ closure model and vertical profiles of significant variables of the urban canyon, namely the velocity, the turbulent kinetic energy, and the concentration, are represented. This is done using the open-source software OpenFOAM and modifying the standard solver simpleFoam to include the concentration equation and the temperature by introducing a buoyancy term in the governing equations. The results of the simulation are validated with experimental results and products of Large-Eddy Simulations (LES) from previous works showing that the simulation is able to reproduce all the quantities under examination with satisfactory accuracy. Moreover, this comparison shows that despite LES are known to be more accurate albeit more expensive, RANS simulations represent a reliable tool if a smaller computational cost is needed. Overall, this work exploits the low computational cost of RANS simulations to produce multiple scenarios useful to evaluate how the dispersion of a pollutant changes by a modification of key variables, such as the temperature.
Resumo:
Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 ºC) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 ºC (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 ºC, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 ºC. This model, however, makes it possible to calculate shelf-life at any other given temperature.
Resumo:
Na primeira semana de maio de 2008, durante quatro dias, um ciclone em superfície permaneceu semi-estacionário na costa da região sul do Brasil. Este sistema foi responsável por chuvas e ventos fortes no Rio Grande do Sul e Santa Catarina, os quais causaram muitos danos (queda de árvores, enchentes e desabamentos). O objetivo deste trabalho é avaliar o processo de formação e entender os mecanismos responsáveis pelo lento deslocamento do ciclone, já que a maioria dos ciclones nesta região possui deslocamento mais rápido. A equação de desenvolvimento de Sutcliffe mostrou que a advecção de vorticidade absoluta ciclônica na média troposfera e a advecção de ar quente na camada entre 1000-500 hPa foram mecanismos importantes para a ciclogênese. Neste período, o intenso aquecimento diabático também contribuiu para a ciclogênese, à medida que se contrapôs ao intenso resfriamento adiabático devido aos movimentos verticais ascendentes. A advecção de vorticidade absoluta ciclônica que favoreceu a ciclogênese esteve associada a um Vórtice Ciclônico em Altos Níveis (VCAN), que se formou numa região de anomalia de vorticidade potencial. O VCAN se manteve semi-estacionário e compôs o setor norte de um bloqueio do tipo dipolo. Tal bloqueio intensificou um anticiclone em superfície, situado a sul/leste do ciclone, o que contribuiu para o ciclone se manter semi-estacionário. O movimento atípico e lento do ciclone para sul, e em alguns períodos para sudoeste, esteve associado com advecções de vorticidade absoluta ciclônica na média troposfera e de ar quente no seu setor sul. Somente quando o bloqueio em níveis médios e a anomalia de vorticidade potencial em níveis médios/altos se enfraqueceram, o ciclone em superfície se afastou da costa sul do Brasil.
Resumo:
The present work has aimed to determine the 16 US EPA priority PAH atmospheric particulate matter levels present in three sites around Salvador, Bahia: (i) Lapa bus station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, and (iii) Bananeira village on Maré Island, a non vehicle-influenced site with activities such as handcraft work and fisheries. Results indicated that BbF (0.130-6.85 ng m-3) is the PAH with highest concentration in samples from Aratu harbor and Bananeira and CRY (0.075-6.85 ng m-3) presented higher concentrations at Lapa station. PAH sources from studied sites were mainly of anthropogenic origin such as gasoline-fueled light-duty vehicles and diesel-fueled heavy-duty vehicles, discharges in the port, diesel burning from ships, dust ressuspension, indoor soot from cooking, and coal and wood combustion for energy production.
Resumo:
In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems. (C) 2009 Optical Society of America
Resumo:
In this paper we study the existence and regularity of mild solutions for a class of abstract partial neutral integro-differential equations with unbounded delay.
Resumo:
Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
Resumo:
Background: Leifsonia xyli is a xylem-inhabiting bacterial species comprised of two subspecies: L. xyli subsp. xyli (Lxx) and L. xyli subsp. cynodontis (Lxc). Lxx is the causal agent of ratoon stunting disease in sugarcane commercial fields and Lxc colonizes the xylem of several grasses causing either mild or no symptoms of disease. The completely sequenced genome of Lxx provided insights into its biology and pathogenicity. Since IS elements are largely reported as an important source of bacterial genome diversification and nothing is known about their role in chromosome architecture of L. xyli, a comparative analysis of Lxc and Lxx elements was performed. Results: Sample sequencing of Lxc genome and comparative analysis with Lxx complete DNA sequence revealed a variable number of IS transposable elements acting upon genomic diversity. A detailed characterization of Lxc IS elements and a comparative review with IS elements of Lxx are presented. Each genome showed a unique set of elements although related to same IS families when considering features such as similarity among transposases, inverted and direct repeats, and element size. Most of the Lxc and Lxx IS families assigned were reported to maintain transposition at low levels using translation regulatory mechanisms, consistent with our in silico analysis. Some of the IS elements were found associated with rearrangements and specific regions of each genome. Differences were also found in the effect of IS elements upon insertion, although none of the elements were preferentially associated with gene disruption. A survey of transposases among genomes of Actinobacteria showed no correlation between phylogenetic relatedness and distribution of IS families. By using Southern hybridization, we suggested that diversification of Lxc isolates is also mediated by insertion sequences in probably recent events. Conclusion: Collectively our data indicate that transposable elements are involved in genome diversification of Lxc and Lxx. The IS elements were probably acquired after the divergence of the two subspecies and are associated with genome organization and gene contents. In addition to enhancing understanding of IS element dynamics in general, these data will contribute to our ongoing comparative analyses aimed at understanding the biological differences of the Lxc and Lxx.
Resumo:
Background: Discussion surrounding the settlement of the New World has recently gained momentum with advances in molecular biology, archaeology and bioanthropology. Recent evidence from these diverse fields is found to support different colonization scenarios. The currently available genetic evidence suggests a ""single migration'' model, in which both early and later Native American groups derive from one expansion event into the continent. In contrast, the pronounced anatomical differences between early and late Native American populations have led others to propose more complex scenarios, involving separate colonization events of the New World and a distinct origin for these groups. Methodology/Principal Findings: Using large samples of Early American crania, we: 1) calculated the rate of morphological differentiation between Early and Late American samples under three different time divergence assumptions, and compared our findings to the predicted morphological differentiation under neutral conditions in each case; and 2) further tested three dispersal scenarios for the colonization of the New World by comparing the morphological distances among early and late Amerindians, East Asians, Australo-Melanesians and early modern humans from Asia to geographical distances associated with each dispersion model. Results indicate that the assumption of a last shared common ancestor outside the continent better explains the observed morphological differences between early and late American groups. This result is corroborated by our finding that a model comprising two Asian waves of migration coming through Bering into the Americas fits the cranial anatomical evidence best, especially when the effects of diversifying selection to climate are taken into account. Conclusions: We conclude that the morphological diversity documented through time in the New World is best accounted for by a model postulating two waves of human expansion into the continent originating in East Asia and entering through Beringia.
Resumo:
We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.
Resumo:
The effect of immobile dust on stability of a magnetized rotating plasma is analyzed. In the presence of dust, a term containing an electric field appears in the one-fluid equation of plasma motion. This electric field leads to an instability of the magnetized rotating plasma called the dust-induced rotational instability (DRI). The DRI is related to the charge imbalance between plasma ions and electrons introduced by the presence of charged dust. In contrast to the well-known magnetorotational instability requiring the decreasing radial profile of the plasma rotation frequency, the DRI can appear for an increasing rotation frequency profile. (c) 2008 American Institute of Physics.
Resumo:
We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.
Resumo:
Electron paramagnetic resonance measurements of NiCl(2)-4SC(NH(2))(2) reveal the low-energy spin dispersion, including a magnetic-field interval in which the two-magnon continuum is within k(B)T of the ground state, allowing a continuum of excitations over a range of k states, rather than only the k=0 single-magnon excitations. This produces a novel Y shape in the frequency-field EPR spectrum measured at T >= 1.5 K. Since the interchain coupling J(perpendicular to)< k(B)T, this shape can be reproduced by a single S=1 antiferromagnetic Heisenberg chain with a strong easy-plane single-ion anisotropy. Importantly, the combination of experiment and modeling we report herein demonstrates a powerful approach to probing spin dispersion in a wide range of interacting magnetic systems without the stringent sample requirements and complications associated with inelastic scattering experiments.