896 resultados para mobile computing
Resumo:
We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organize into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention-based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first motivate that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (t) (1/eta), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterization of the optimal operating point. Simulation results are provided comparing the performance of the optimal strategy derived here with some simple strategies for operating the network.
Resumo:
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].
Resumo:
The relentlessly increasing demand for network bandwidth, driven primarily by Internet-based services such as mobile computing, cloud storage and video-on-demand, calls for more efficient utilization of the available communication spectrum, as that afforded by the resurging DSP-powered coherent optical communications. Encoding information in the phase of the optical carrier, using multilevel phase modulationformats, and employing coherent detection at the receiver allows for enhanced spectral efficiency and thus enables increased network capacity. The distributed feedback semiconductor laser (DFB) has served as the near exclusive light source powering the fiber optic, long-haul network for over 30 years. The transition to coherent communication systems is pushing the DFB laser to the limits of its abilities. This is due to its limited temporal coherence that directly translates into the number of different phases that can be imparted to a single optical pulse and thus to the data capacity. Temporal coherence, most commonly quantified in the spectral linewidth Δν, is limited by phase noise, result of quantum-mandated spontaneous emission of photons due to random recombination of carriers in the active region of the laser.
In this work we develop a generically new type of semiconductor laser with the requisite coherence properties. We demonstrate electrically driven lasers characterized by a quantum noise-limited spectral linewidth as low as 18 kHz. This narrow linewidth is result of a fundamentally new laser design philosophy that separates the functions of photon generation and storage and is enabled by a hybrid Si/III-V integration platform. Photons generated in the active region of the III-V material are readily stored away in the low loss Si that hosts the bulk of the laser field, thereby enabling high-Q photon storage. The storage of a large number of coherent quanta acts as an optical flywheel, which by its inertia reduces the effect of the spontaneous emission-mandated phase perturbations on the laser field, while the enhanced photon lifetime effectively reduces the emission rate of incoherent quanta into the lasing mode. Narrow linewidths are obtained over a wavelength bandwidth spanning the entire optical communication C-band (1530-1575nm) at only a fraction of the input power required by conventional DFB lasers. The results presented in this thesis hold great promise for the large scale integration of lithographically tuned, high-coherence laser arrays for use in coherent communications, that will enable Tb/s-scale data capacities.
Resumo:
In this paper, a low-complexity soft-output QRD-M detection algorithm is proposed for high-throughput Multiple-input multiple-output (MIMO) systems. By employing novel expansion on demand and distributed sorting scheme, the proposed algorithm can reduce 70% and 85% foundational operations for 16-QAM and 64-QAM respectively compared to the conventional QRD-M algorithm. Furthermore, the proposed algorithm can yield soft information to improve the bit error rate (BER) performance. Simulation results show that the proposed algorithm can achieve a near-NIL detection performance with less foundational operations
Resumo:
National Natural Science Foundation of China; Dalian University of Technology
Resumo:
为满足移动环境对非结构化个人信息管理的自然性和高效性的需求,提出一个基于移动设备的个人信息管理系统Ruby.首先分析了移动环境对个人信息管理的需求,描述了系统框架,接着介绍了系统界面和交互过程,并阐述了支持该系统的2个主要技术:非结构化笔记编辑技术和基于笔迹标签的检索技术.对2个技术和整个系统的评估结果表明,该系统能够满足移动环境对自然交互、非结构化信息采集加工及个人信息自然检索的需求.
Resumo:
Urquhart, C., Spink, S., Thomas, R., Yeoman, A., Durbin, J., Turner, J., Fenton, R. & Armstrong, C. (2004). JUSTEIS: JISC Usage Surveys: Trends in Electronic Information Services Final report 2003/2004 Cycle Five. Aberystwyth: Department of Information Studies, University of Wales Aberystwyth. Sponsorship: JISC
Resumo:
The proliferation of mobile computers and wireless networks requires the design of future distributed real-time applications to recognize and deal with the significant asymmetry between downstream and upstream communication capacities, and the significant disparity between server and client storage capacities. Recent research work proposed the use of Broadcast Disks as a scalable mechanism to deal with this problem. In this paper, we propose a new broadcast disks protocol, based on our Adaptive Information Dispersal Algorithm (AIDA). Our protocol is different from previous broadcast disks protocols in that it improves communication timeliness, fault-tolerance, and security, while allowing for a finer control of multiplexing of prioritized data (broadcast frequencies). We start with a general introduction of broadcast disks. Next, we propose broadcast disk organizations that are suitable for real-time applications. Next, we present AIDA and show its fault-tolerance and security properties. We conclude the paper with the description and analysis of AIDA-based broadcast disks organizations that achieve both timeliness and fault-tolerance, while preserving downstream communication capacity.
Resumo:
The quality of available network connections can often have a large impact on the performance of distributed applications. For example, document transfer applications such as FTP, Gopher and the World Wide Web suffer increased response times as a result of network congestion. For these applications, the document transfer time is directly related to the available bandwidth of the connection. Available bandwidth depends on two things: 1) the underlying capacity of the path from client to server, which is limited by the bottleneck link; and 2) the amount of other traffic competing for links on the path. If measurements of these quantities were available to the application, the current utilization of connections could be calculated. Network utilization could then be used as a basis for selection from a set of alternative connections or servers, thus providing reduced response time. Such a dynamic server selection scheme would be especially important in a mobile computing environment in which the set of available servers is frequently changing. In order to provide these measurements at the application level, we introduce two tools: bprobe, which provides an estimate of the uncongested bandwidth of a path; and cprobe, which gives an estimate of the current congestion along a path. These two measures may be used in combination to provide the application with an estimate of available bandwidth between server and client thereby enabling application-level congestion avoidance. In this paper we discuss the design and implementation of our probe tools, specifically illustrating the techniques used to achieve accuracy and robustness. We present validation studies for both tools which demonstrate their reliability in the face of actual Internet conditions; and we give results of a survey of available bandwidth to a random set of WWW servers as a sample application of our probe technique. We conclude with descriptions of other applications of our measurement tools, several of which are currently under development.
Resumo:
There is an increased interest in using broadcast disks to support mobile access to real-time databases. However, previous work has only considered the design of real-time immutable broadcast disks, the contents of which do not change over time. This paper considers the design of programs for real-time mutable broadcast disks - broadcast disks whose contents are occasionally updated. Recent scheduling-theoretic results relating to pinwheel scheduling and pfair scheduling are used to design algorithms for the efficient generation of real-time mutable broadcast disk programs.
Resumo:
currently in press. This is the first published attempt to engineer QoS into a contention-based MAC layer protocol. The work was based on a cross-layer approach to providing programmability into wireless LANs. The work arose from an EPSRC grant in the "programmable networks" call, with Philips / STM research in Italy (Dr Melpignano). Subsequent follow-on includes the formation of a spin-out company (TOM) based on the idea.
Resumo:
The problem of topology control is to assign per-node transmission power such that the resulting topology is energy efficient and satisfies certain global properties such as connectivity. The conventional approach to achieve these objectives is based on the fundamental assumption that nodes are socially responsible. We examine the following question: if nodes behave in a selfish manner, how does it impact the overall connectivity and energy consumption in the resulting topologies? We pose the above problem as a noncooperative game and use game-theoretic analysis to address it. We study Nash equilibrium properties of the topology control game and evaluate the efficiency of the induced topology when nodes employ a greedy best response algorithm. We show that even when the nodes have complete information about the network, the steady-state topologies are suboptimal. We propose a modified algorithm based on a better response dynamic and show that this algorithm is guaranteed to converge to energy-efficient and connected topologies. Moreover, the node transmit power levels are more evenly distributed, and the network performance is comparable to that obtained from centralized algorithms.
Resumo:
Traditional Time Division Multiple Access (TDMA) protocol provides deterministic periodic collision free data transmissions. However, TDMA lacks flexibility and exhibits low efficiency in dynamic environments such as wireless LANs. On the other hand contention-based MAC protocols such as the IEEE 802.11 DCF are adaptive to network dynamics but are generally inefficient in heavily loaded or large networks. To take advantage of the both types of protocols, a D-CVDMA protocol is proposed. It is based on the k-round elimination contention (k-EC) scheme, which provides fast contention resolution for Wireless LANs. D-CVDMA uses a contention mechanism to achieve TDMA-like collision-free data transmissions, which does not need to reserve time slots for forthcoming transmissions. These features make the D-CVDMA robust and adaptive to network dynamics such as node leaving and joining, changes in packet size and arrival rate, which in turn make it suitable for the delivery of hybrid traffic including multimedia and data content. Analyses and simulations demonstrate that D-CVDMA outperforms the IEEE 802.11 DCF and k-EC in terms of network throughput, delay, jitter, and fairness.