961 resultados para minimum alveolar concentration


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) and kill kinetics were established for vancomycin, rifampicin, trimethoprim, gentamicin, and ciprofloxacin against the biofilm forming bacteria Staphylococcus epidermidis (ATCC 35984), Staphylococcus aureus (ATCC 29213), Methicillin Resistant Staphylococcus aureus (MRSA) (ATCC 43300), Pseudomonas aeruginosa (PAO1), and Escherichia coli (NCTC 8196). MICs and MBCs were determined via broth microdilution in 96-well plates. MBECs were studied using the Calgary Biofilm Device. Values obtained were used to investigate the kill kinetics of conventional antimicrobials against a range of planktonic and biofilm microorganisms over a period of 24 hours. Planktonic kill kinetics were determined at 4xMIC and biofilm kill kinetics at relative MBECs. Susceptibility of microorganisms varied depending on antibiotic selected and phenotypic form of bacteria. Gram-positive planktonic isolates were extremely susceptible to vancomycin (highest MBC: 7.81 mg L−1: methicillin sensitive and resistant S. aureus) but no MBEC value was obtained against all biofilm pathogens tested (up to 1000 mg L−1). Both gentamicin and ciprofloxacin displayed the broadest spectrum of activity with MIC and MBCs in the mg L−1 range against all planktonic isolates tested and MBEC values obtained against all but S. epidermidis (ATCC 35984) and MRSA (ATCC 43300).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, we report the antimicrobial planktonic and biofilm kill kinetics of ultrashort cationic lipopeptides previously demonstrated by our group to have a minimum biofilm eradication concentration (MBEC) in the microgram per mL (μg/mL) range against clinically relevant biofilm-forming micro-organisms. We compare the rate of kill for the most potent of these lipopeptides, dodecanoic (lauric) acid-conjugated C12-Orn-Orn-Trp-Trp-NH2 against the tetrapeptide amide H-Orn-Orn-Trp-Trp-NH2 motif and the amphibian peptide Maximin-4 via a modification of the MBEC Assay™ for Physiology & Genetics (P&G). Improved antimicrobial activity is achieved upon N-terminal lipidation of the tetrapeptide amide. Increased antimicrobial potency was demonstrated against both planktonic and biofilm forms of Gram-positive micro-organisms. We hypothesize rapid kill to be achieved by targeting of microbial membranes. Complete kill against established 24-h Gram-positive biofilms occurred within 4 h of exposure to C12-OOWW-NH2 at MBEC values [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 15.63 μg/mL] close to the values for the planktonic minimum inhibitory concentration (MIC) [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 1.95 μg/mL]. Such rapid kill, especially against sessile biofilm forms, is indicative of a reduction in the likelihood of resistant strains developing with the potential for quicker resolution of pathogenic infection. Ultrashort antimicrobial lipopeptides have high potential as antimicrobial therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inhaled antibiotics, such as tobramycin, for the treatment of Pseudomonas aeruginosa pulmonary infections are associated with the increase in life expectancy seen in cystic fibrosis (CF) patients over recent years. However, the effectiveness of this aminoglycoside is still limited by its inability to penetrate the thick DNA-rich mucus in the lungs of these patients, leading to low antibiotic exposure to resident bacteria. In this study, we created novel polymeric nanoparticle (NP) delivery vehicles for tobramycin. Using isothermal titration calorimetry, we showed that tobramycin binds with alginate polymer and, by exploiting this interaction, optimised the production of tobramycin alginate/chitosan NPs. It was established that NP antimicrobial activity against P. aeruginosa PA01 was equivalent to unencapsulated tobramycin (minimum inhibitory concentration 0.625 mg/L). Galleria mellonella was employed as an in vivo model for P. aeruginosa infection. Survival rates of 90% were observed following injection of NPs, inferring low NP toxicity. After infection with P. aeruginosa, we showed that a lethal inoculum was effectively cleared by tobramycin NPs in a dose dependent manner. Crucially, a treatment with NPs prior to infection provided a longer window of antibiotic protection, doubling survival rates from 40% with free tobramycin to 80% with NP treatment. Tobramycin NPs were then functionalised with dornase alfa (recombinant human deoxyribonuclease I, DNase), demonstrating DNA degradation and improved NP penetration of CF sputum. Following incubation with CF sputum, tobramycin NPs both with and without DNase functionalisation, exhibited anti-pseudomonal effects. Overall, this work demonstrates the production of effective antimicrobial NPs, which may have clinical utility as mucus-penetrating tobramycin delivery vehicles, combining two widely used CF therapeutics into a single NP formulation. This nano-antibiotic represents a strategy to overcome the mucus barrier, increase local drug concentrations, avoid systemic adverse effects and improve outcomes for pulmonary infections in CF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial epiphytes isolated from marine eukaryotes were screened for the production of quorum sensing inhibitory compounds (QSIs). Marine isolate KS8, identified as a Pseudoalteromonas sp., was found to display strong quorum sensing inhibitory (QSI) activity against acyl homoserine lactone (AHL)-based reporter strains Chromobacterium violaceum ATCC 12472 and CV026. KS8 supernatant significantly reduced biofilm biomass during biofilm formation (−63%) and in pre-established, mature P. aeruginosa PAO1 biofilms (−33%). KS8 supernatant also caused a 0.97-log reduction (−89%) and a 2-log reduction (−99%) in PAO1 biofilm viable counts in the biofilm formation assay and the biofilm eradication assay respectively. The crude organic extract of KS8 had a minimum inhibitory concentration (MIC) of 2 mg/mL against PAO1 but no minimum bactericidal concentration (MBC) was observed over the concentration range tested (MBC > 16 mg/mL). Sub-MIC concentrations (1 mg/mL) of KS8 crude organic extract significantly reduced the quorum sensing (QS)-dependent production of both pyoverdin and pyocyanin in P. aeruginosa PAO1 without affecting growth. A combinatorial approach using tobramycin and the crude organic extract at 1 mg/mL against planktonic P. aeruginosa PAO1 was found to increase the efficacy of tobramycin ten-fold, decreasing the MIC from 0.75 to 0.075 µg/mL. These data support the validity of approaches combining conventional antibiotic therapy with non-antibiotic compounds to improve the efficacy of current treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Cationic, α- helical antimicrobial peptides found in skin secretions of the African Volcano Frog, Xenopus amieti include magainin-AM1, peptide glycine-leucine-amide (PGLa-AM1) and caerulein-precursor fragment (CPF-AM1). Objectives: The principle objective of this study was to determine the antibacterial activity of these peptides against a range of aerobic and anaerobic and oral pathogens. Secondary objectives were to establish their lipopolysaccharide (LPS) binding activity and determine potential cytotoxic effects against host cells. Methods: Magainin-AM1, PGLa-AM1 and CPF-AM1 were assessed for their antimicrobial activity against Fusobacteriim nucleatum, Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis and Streptococcus milleri using a double layer radial diffusion assay. The propensity for each peptide to bind LPS was determined using an indirect ELISA. The potential cytotoxicity of the peptides against human pulp cells in vitro was determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Magainin-AM1, PGLa-AM1 and CPF-AM1 displayed potent antimicrobial activity against all the bacterial pathogens tested, with Magainin-AM1 being the least effective. PGLa-AM1 was most potent against S. mutans, with a minimum inhibitory concentration (MIC) of 1.2 μM. PGLa-AM1 and CPF-AM1 were both very active against F. nucleatum with MIC values of 1.5 μM and 2.2 μM respectively. The LPS binding ability of the peptides varied depending on the bacterial source of the LPS, with PGLa-AM-1 being the most effective at binding LPS. Cytotoxicity studies revealed all three peptides lacked cytotoxic effects at the concentrations tested. Conclusions: The peptides magainin-AM1, PGLa-AM1 and CPF-AM1 from the African Volcano Frog, Xenopus amieti displayed potent antimicrobial activity and LPS binding activity against a range of oral pathogens with little cytotoxic effects. These peptides merit further studies for the development of novel therapeutics to combat common oral bacterial infections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Candida albicans is a commensal organism and a constituent of the normal oral flora. Cell concentrations of 1x102 cells/ml and below are indicative of commensal colonisation in the oral cavity, above this level C. albicans can become an opportunistic pathogen; it is the most prevalent human fungal pathogen and a causal agent of the oral infection, candidiasis. The capacity of C. albicans to cause infection arises from its ability to exist in a biofilm ecosystem. Mature C. albicans biofilms display a high level of resistance to antifungals and the need for other therapeutic options has become paramount. Objectives: The objectives of the current study were to determine the antifungal activity of LL-37 (a member of the human cathelicidin family) and two truncated peptide mimetics against C. albicans in both planktonic and biofilm form. Methods: Radial diffusion assays were used to obtain the minimum inhibitory concentration (MIC) of LL-37 and the truncated mimetics KE-18 and KR-12 against planktonic C. albicans. A 96 well microtitre plate assay was employed to study the effects of the peptides on early candida biofilm formation (up to 24 hours) compared with the antifungal drug fluconazole. Biofilm quantification was achieved using the crystal violet assay. Results: MIC values obtained: LL-37 >250µg/ml; KE-18 51µg/ml; and KR-12 11µg/ml. LL-37 significantly reduced the quantity of biofilm formed by C.albicans at both the 4 h and 24 h timepoints (p <0.0001). KE-18 showed significant biofilm reduction over 4 h and 24 h (p=0.0002, p=0.013 respectively), KR-12 showed significant reduction at the 24 h time point only (p=0.0256). Conclusions: Results suggest that LL-37 has the ability to disrupt early biofilm formation of C. albicans with its potency of action similar with that of fluconazole.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Candidal species, particularly Candida albicans are common pathogens in the oral cavity and perioral region. Many of the manifestations of candidiasis are associated with the formation of Candida biofilms on host surfaces and/or implanted biomaterials. Biofilms are clinically important due to their increased resistance to therapeutic intervention and the ability of cells within the biofilm to withstand host immune defences.
Objectives: The present study was designed to investigate the antifungal activity of two peptides found in skin secretions of the African volcano frog (Xenopus amieti) against the type strain of C. albicans NCTC 3179.
Methods: The antifungal activity of magainin-AM1 and peptide glycine-leucine-amide (PGLa-AM1) against C. albicans NCTC 3179 was studied in both planktonic and biofilm forms. Radial diffusion assays were used to obtain the minimum inhibitory concentration (MIC) of magainin-AM1 and PGLa-AM1 against planktonic C. albicans. Time kill assays were used to determine the time dependent fungicidal action of the peptides at both 4oC and 37oC. A 96 well microtitre plate model for candidal biofilm formation was employed to study the ability of the peptides to disrupt the early biofilm development (up to 24 hours) compared with the antifungal drug fluconazole. Biofilm formation was determined quantitatively using the crystal violet assay.
Results: Both magainin-AM1 and PGLa-AM1 demonstrated inhibitory activity against Candida albicans, with MIC values of 24.3 uM and 7.5uM respectively. Time-kill assays revealed bactericidal activity of both peptides at 37oC and 4oC. Magainin-AM1 and PGLa-AM1 inhibited biofilm formation in microtitre plate assays. The peptides were particularly effective during early biofilm establishment when compared with fluconazole treatment.
Conclusions: Magainin-AM1 and PGLa-AM1 are active against C albicans in both planktonic and biofilm forms. Further testing of this peptide family against candidal biofilms is recommended.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tese teve como objectivo estudar estratégias de conservação de pescado fresco, recorrendo ao uso de extractos e óleos essenciais de plantas e do processamento por alta pressão (HPP), usando filetes de robalo como um caso de estudo modelo. Relativamente aos extractos e óleos essenciais, avaliaram-se as suas propriedades antibacterianas e antioxidantes. Os extractos aquosos quente de poejo e de orégão e o óleo essencial de cravinho apresentaram a maior actividade antioxidante. Os óleos essenciais foram mais eficientes do que os extractos para inibir o crescimento das estirpes bacterianas testadas, tendo-se observado os menores valores de concentração mínima inibitória nos óleos essenciais de orégão, citronela, alho e orégão Espanhol. De seguida, estudou-se o efeito dos óleos essenciais de orégão Espanhol e de limão na conservação de filetes de robalo fresco tendo em conta critérios microbiológicos, químicos, físicos e sensoriais. A aplicação do óleo essencial de orégão Espanhol aumentou o tempo de vida útil dos filetes sob o ponto de vista bacteriano, mas não em termos sensoriais. A combinação dos óleos essenciais de orégão Espanhol e de limão melhorou o efeito antioxidante e reduziu a intensidade do odor e a sua eficácia em relação às Enterobacteriaceae, comparando com o tratamento com óleo essencial de orégão Espanhol per se. No sentido de reduzir o odor conferido pelos óleos essenciais realizou-se um estudo de conservação para avaliar o efeito de películas com óleos essenciais (citronela, alho e tomilho) em filetes de robalo, recorrendo a uma teste de desafio bacteriano. As películas sem óleos essenciais aumentaram o tempo de vida útil sob o ponto de vista bacteriano, mas este efeito não foi observado com a incorporação dos óleos essenciais nas películas. Em relação ao HPP, testaram-se diversas condições (nível de pressão, tempo de pressurização e taxa de pressurização) e avaliaram-se os efeitos na actividade enzimática, na qualidade global e na conservação de filetes de robalo fresco. Em geral, o aumento do nível de pressão e do tempo de pressurização diminuiu a actividade da fosfatase ácida e das enzimas proteolíticas, a carga bacteriana e a capacidade de retenção de água, enquanto que os filetes ficaram mais brancos. O HPP revelou potencial para o desenvolvimento de novos produtos: mais brancos, não translúcidos, mais firmes e com maior tempo de frescura e estabilidade microbiológica. Em conclusão, os óleos essenciais e o HPP têm potencial para conservar pescado fresco, devido aos seus efeitos na qualidade bacteriana. Ainda assim, mais esforços devem ser feitos no sentido de reduzir a transferência de odor dos óleos essenciais para o pescado e os efeitos do HPP no aspecto do pescado e na oxidação lipídica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract The emergence of multi and extensively drug resistant tuberculosis (MDRTB and XDRTB) has increased the concern of public health authorities around the world. The World Health Organization has defined MDRTB as tuberculosis (TB) caused by organisms resistant to at least isoniazid and rifampicin, the main first-line drugs used in TB therapy, whereas XDRTB refers to TB resistant not only to isoniazid and rifampicin, but also to a fluoroquinolone and to at least one of the three injectable second-line drugs, kanamycin, amikacin and capreomycin. Resistance in Mycobacterium tuberculosis is mainly due to the occurrence of spontaneous mutations and followed by selection of mutants by subsequent treatment. However, some resistant clinical isolates do not present mutations in any genes associated with resistance to a given antibiotic, which suggests that other mechanism(s) are involved in the development of drug resistance, namely the presence of efflux pump systems that extrude the drug to the exterior of the cell, preventing access to its target. Increased efflux activity can occur in response to prolonged exposure to subinhibitory concentrations of anti-TB drugs, a situation that may result from inadequate TB therapy. The inhibition of efflux activity with a non-antibiotic inhibitor may restore activity of an antibiotic subject to efflux and thus provide a way to enhance the activity of current anti-TB drugs. The work described in this thesis foccus on the study of efflux mechanisms in the development of multidrug resistance in M. tuberculosis and how phenotypic resistance, mediated by efflux pumps, correlates with genetic resistance. In order to accomplish this goal, several experimental protocols were developed using biological models such as Escherichia coli, the fast growing mycobacteria Mycobacterium smegmatis, and Mycobacterium avium, before their application to M. tuberculosis. This approach allowed the study of the mechanisms that result in the physiological adaptation of E. coli to subinhibitory concentrations of tetracycline (Chapter II), the development of a fluorometric method that allows the detection and quantification of efflux of ethidium bromide (Chapter III), the characterization of the ethidium bromide transport in M. smegmatis (Chapter IV) and the contribution of efflux activity to macrolide resistance in Mycobacterium avium complex (Chapter V). Finally, the methods developed allowed the study of the role of efflux pumps in M. tuberculosis strains induced to isoniazid resistance (Chapter VI). By this manner, in Chapter II it was possible to observe that the physiological adaptation of E. coli to tetracycline results from an interplay between events at the genetic level and protein folding that decrease permeability of the cell envelope and increase efflux pump activity. Furthermore, Chapter III describes the development of a semi-automated fluorometric method that allowed the correlation of this efflux activity with the transport kinetics of ethidium bromide (a known efflux pump substrate) in E. coli and the identification of efflux inhibitors. Concerning M. smegmatis, we have compared the wild-type M. smegmatis mc2155 with knockout mutants for LfrA and MspA for their ability to transport ethidium bromide. The results presented in Chapter IV showed that MspA, the major porin in M. smegmatis, plays an important role in the entrance of ethidium bromide and antibiotics into the cell and that efflux via the LfrA pump is involved in low-level resistance to these compounds in M. smegmatis. Chapter V describes the study of the contribution of efflux pumps to macrolide resistance in clinical M. avium complex isolates. It was demonstrated that resistance to clarithromycin was significantly reduced in the presence of efflux inhibitors such as thioridazine, chlorpromazine and verapamil. These same inhibitors decreased efflux of ethidium bromide and increased the retention of [14C]-erythromycin in these isolates. Finaly, the methods developed with the experimental models mentioned above allowed the study of the role of efflux pumps on M. tuberculosis strains induced to isoniazid resistance. This is described in Chapter VI of this Thesis, where it is demonstrated that induced resistance to isoniazid does not involve mutations in any of the genes known to be associated with isoniazid resistance, but an efflux system that is sensitive to efflux inhibitors. These inhibitors decreased the efflux of ethidium bromide and also reduced the minimum inhibitory concentration of isoniazid in these strains. Moreover, expression analysis showed overexpression of genes that code for efflux pumps in the induced strains relatively to the non-induced parental strains. In conclusion, the work described in this thesis demonstrates that efflux pumps play an important role in the development of drug resistance, namely in mycobacteria. A strategy to overcome efflux-mediated resistance may consist on the use of compounds that inhibit efflux activity, restoring the activity of antimicrobials that are efflux pump substrates, a useful approach particularly in TB where the most effective treatment regimens are becoming uneffective due to the increase of MDRTB/XDRTB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os Líquidos Iónicos (LIs) são sais orgânicos constituídos exclusivamente por iões e possuem pontos de fusão inferiores a 100ºC. As suas propriedades únicas e o facto de ser possível ajustar as suas propriedades físicas, químicas e biológicas, de acordo com o objetivo pretendido, tornam esta classe de compostos, um grande objeto de estudo de inúmeros investigadores. Desde os inícios da sua aplicação até à atualidade, a investigação nesta área expandiu o seu raio de ação, estando já descrito o seu potencial como agentes antimicrobianos e, mais recentemente, como compostos farmacêuticos ativos. Atualmente muitas das suas aplicações são baseadas nas suas propriedades biológicas. Esta Tese teve como objetivo avaliar a influência que os LIs podem exercer a nível do crescimento bacteriano e estudar alternativas de combater a resistência bacteriana. Todos os LIs utilizados neste trabalho tinham como anião o ácido valpróico, sendo utilizados catiões orgânicos de amónio e de imidazólio. Foram utilizadas 4 bactérias e avaliou-se a atividade biológica e a respetiva taxa de crescimento. O estudo da sua atividade biológica foi feito através da determinação da Concentração Mínima Inibitória (CMI) e a análise das suas curvas de crescimentos na presença e ausência de composto. Com este trabalho foi possível verificar que dentro dos compostos em estudo, LIs derivados do valproato, o Valproato com o cetilperidínio [valp] [cetylpir] foi o que influenciou o crescimento de todas as bactérias estudadas. Este estudo demonstrou o potencial antibacteriano de alguns compostos, podendo desta forma vir a ser utilizados para fins farmacêuticos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As quinoxalinas são compostos heterocíclicos que têm, entre outras, capacidades antimicrobianas, inclusivamente contra bactérias resistentes aos antimicrobianos convencionais. Os mecanismos pelos quais estes compostos exercem a sua atividade ainda não está completamente esclarecido. O objetivo do presente estudo é avaliar o efeito redox em sinergismo/antagonismo com as quinoxalinas em modelos de bactérias com e sem resistências a antimicrobianos. No que se refere aos compostos foram utilizados a quinoxalina 1,4-dióxido (QNX), 2-metil-3-benzilquinoxalina-1,4-dióxido (2M3BQNX), 2-metilquinoxalina-1,4-dióxido (2MQNX) e a 2-amino-3-cianoquinoxalina-1,4-dióxido (2A3CQNX). Quanto aos modelos procariotas, foram utilizados a Salmonella enterica, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus saprophyticus, Enterobacter aerogenes, Enterobacter cloacae, Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus ATCC 43300, Escherichia coli TEM 201 e Escherichia coli TEM 180. Nos compostos químicos em que se verificou a Concentração Mínima Inibitória (CMI), realizou-se o estudo do comportamento do crescimento bacteriano. Relativamente ao estado redox, foi avaliado para cada estirpe sensível, através do rácio GSH/GSSG, nas doses inibitórias e não inibitórias de cada composto. Os resultados apresentam que todos os compostos testados, à exceção do 2M3BQNX, têm atividade antimicrobiana na maioria das estirpes, excetuando a E. faecalis e a S. saprophyticus. Os rácios GSH/GSSG apontam para o efeito oxidante em K. pneumoniae e S. enterica e antioxidante na E. aerogenes. A conclusão do estudo sugere que os compostos apresentam elevada capacidade antibacteriana e influência no equilíbrio redox das bactérias, podendo contribuir para o esclarecimento do mecanismo de ação dos derivados das quinoxalinas 1-4 dióxido, nas bactérias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’émergence des souches bactériennes résistantes aux antibiotiques est un phénomène inquiétant, qui se répand à travers le monde. Staphylococcus aureus et Pseudomonas aeruginosa sont des bactéries pathogènes opportunistes multi résistantes qui peuvent causer plusieurs maladies. Cependant, ces bactéries deviennent difficiles à traiter avec des antibiotiques sans occasionner de toxicité. Alors pour trouver des solutions, c’est nécessaire de développer de nouvelles molécules afin de combattre les agents pathogènes résistants. Grâce à leur action pharmacologique, les fluorures exercent un certain effet antibactérien au niveau de l'émail des dents; donc, leur association aux antibiotiques pourrait bien a méliorer l’activité antimicrobienne. De ce fait, nous nous sommes proposés d’étudier les activités in vitro de la vancomycine (VAN), l’oxacilline (OXA), la ceftazidime (CFT) et la méropenème (MER) libre ou associée au fluorure de sodium (NaF) et fluorure de lithium (LiF) qui ont été évaluées sur des souches S.aureus et P.aeruginosa sensibles et résistantes, par la méthode de la microdilution en bouillon, déterminant leur concentration minimale inhibitrice (CMI), leur concentration minimale bactéricide (CMB), leur courbe cinétique (Time-Kill). Leur cytotoxicité sur les globules rouges humains, et leur stabilité à la température de 4°C et 22°C ont été étudiées. Les associations des antimicrobiens aux dérivés des fluorures ont montré une amélioration de l’effet des antibiotiques par la réduction des leurs concentrations et toxicité pour traiter correctement ces pathogènes résistants. Par conséquent, des antibiotiques associés aux dérivés de fluorure pourraient devenir une option de traitement contre des souches résistantes afin de diminuer la toxicité causée par de fortes doses des antibiotiques conventionnels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose and demonstrate a new technique for evanescent wave chemical sensing by writing long period gratings in a bare multimode plastic clad silica fiber. The sensing length of the present sensor is only 10 mm, but is as sensitive as a conventional unclad evanescent wave sensor having about 100 mm sensing length. The minimum measurable concentration of the sensor reported here is 10 nmol/l and the operating range is more than 4 orders of magnitude. Moreover, the detection is carried out in two independent detection configurations viz., bright field detection scheme that detects the core-mode power and dark field detection scheme that detects the cladding mode power. The use of such a double detection scheme definitely enhances the reliability and accuracy of the results. Furthermore, the cladding of the present fiber need not be removed as done in conventional evanescent wave fiber sensors.