988 resultados para mine water


Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Coal Industry Advisory Committee to the Ohio River Valley Water Sanitation Commission. Research project no. 370-8."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The suction profile of a desiccating soil is dependent on the water table depth, the soil-water retention characteristics, and the climatic conditions. In this paper, an unsaturated flow model, which simulates both liquid and vapour flow, was used to investigate the effects of varying the water table depth and the evaporation rate on the evaporative fluxes from a desiccating tailings deposit under steady-state conditions. Results obtained showed that at a critical evaporation rate, beyond which evaporation is no longer dictated by climatic conditions, the matric suction profiles remain basically unchanged. The critical evaporation rate varies inversely with the water table depth. It is associated with the maximum evaporative flux that might be extracted from a soil at steady-state conditions. The time required to establish steady-state conditions is directly proportional to the water table depth, and it acquires a maximum value at the critical evaporation rate. A detailed investigation of the movement of the drying front demonstrated the significance of attaining a matric suction of about 3000 kPa on the contribution to flow in the vapour phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Todoroki Mine is situated about 25 kilometers to the south-east of Ginzan railway station in Siribesi Province, Hokkaido. The author analysed an interesting specimen of black manganese-ore which had a fractured surface which looked like that of a broken piece of wood. This new manganese mineral was studied in its form, physical properties and chemical composition. The author later named this mineral form as "todorokite".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The roasting of gold-bearing arsenopyrite at Giant mine (Northwest Territories) between 1949 and 1999 released approximately 20,000 tonnes of toxic arsenic-bearing aerosols in the local aerial environment. Detailed examination of lake sediments, sediment porewaters, surface waters and lake hydrology sampled from three lakes of differing limnological characteristics was conducted in summer and winter conditions. Samples were analyzed for solid and dissolved elemental concentrations, speciation and mineralogy. The three lakes are located less than 5km from the mine roaster, and downwind, based on predominant wind direction. The objective of the study was to assess the controls on the mobility and fate of arsenic in these roaster-impacted subarctic lacustrine environments. Results show that the occurrence of arsenic trioxide in lake sediments coincides with the regional onset of industrial activities. The bulk of arsenic in sediments is contained in the form of secondary sulphide precipitates, with iron oxides hosting a minimal amount of arsenic near the surface-water interface. The presence of geogenic arsenic is likely contained as dilute impurities in common rock-forming minerals, and is not believed to be a significant source of arsenic to sediments, porewaters or lake waters. Furthermore, the well correlated depth-profiles of arsenic, antimony and gold in sediments may help reveal roaster impact. The soluble arsenic trioxide particles contained in sediments act as the primary source of arsenic into porewaters. Dissolved arsenic in reducing porewaters both precipitate as secondary sulphides in situ, and diffuse upwards into the overlying lake waters. Arsenic diffusion out of porewaters, combined with watercourse-driven residence time, are estimated to be the predominant mechanisms controlling arsenic concentrations in overlying lake waters. The sequestration of arsenic from porewaters as sulphide precipitates, in the study lakes, is not an effective process in keeping lake-water arsenic concentrations below guidelines for the protection of the freshwater environment and drinking water. Seasonal impacts on lake geochemistry derive from ice covering lake waters, cutting them off from of atmospheric oxygen, along with the exclusion of solutes from the ice. Such effects are limited in deep lakes but are can be an important factor controlling arsenic precipitation and mobility in ponds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrothermal liquefaction(HTL) of algal biomass is a promising route to viable second generation biofuels. In this investigation HTL was assessed for the valorisation of algae used in the remediation of acid mine drainage (AMD). Initially the HTL process was evaluated using Arthrospira platensis (Spirulina) with additional metal sulphates to simulate metal remediation. Optimised conditions were then used to process a natural algal community (predominantly Chlamydomonas sp.) cultivated under two scenarios: high uptake and low uptake of metals from AMD. High metal concentrations appear to catalyse the conversion to bio-oil, and do not significantly affect the heteroatom content or higher heating value of the bio-oil produced. The associated metals were found to partition almost exclusively into the solid residue, favourable for potential metal recovery. High metal loadings also caused partitioning of phosphates from the aqueous phase to the solid phase, potentially compromising attempts to recycle process water as a growth supplement. HTL was therefore found to be a suitable method of processing algae used in AMD remediation, producing a crude oil suitable for upgrading into hydrocarbon fuels, an aqueous and gas stream suitable for supplementing the algal growth and the partitioning of most contaminant metals to the solid residue where they would be readily amenable for recovery and/or disposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrothermal liquefaction(HTL) of algal biomass is a promising route to viable second generation biofuels. In this investigation HTL was assessed for the valorisation of algae used in the remediation of acid mine drainage (AMD). Initially the HTL process was evaluated using Arthrospira platensis (Spirulina) with additional metal sulphates to simulate metal remediation. Optimised conditions were then used to process a natural algal community (predominantly Chlamydomonas sp.) cultivated under two scenarios: high uptake and low uptake of metals from AMD. High metal concentrations appear to catalyse the conversion to bio-oil, and do not significantly affect the heteroatom content or higher heating value of the bio-oil produced. The associated metals were found to partition almost exclusively into the solid residue, favourable for potential metal recovery. High metal loadings also caused partitioning of phosphates from the aqueous phase to the solid phase, potentially compromising attempts to recycle process water as a growth supplement. HTL was therefore found to be a suitable method of processing algae used in AMD remediation, producing a crude oil suitable for upgrading into hydrocarbon fuels, an aqueous and gas stream suitable for supplementing the algal growth and the partitioning of most contaminant metals to the solid residue where they would be readily amenable for recovery and/or disposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For fifty years (1949–99) the now-abandoned Giant Mine in Yellowknife emitted arsenic air and water pollution into the surrounding environment. Arsenic pollution from Giant Mine had particularly acute health impacts on the nearby Yellowknives Dene First Nation (YKDFN), who were reliant on local lakes, rivers, and streams for their drinking water, in addition to frequent use of local berries, garden produce, and medicine plants. Currently, the Canadian government is undertaking a remediation project at Giant Mine to clean up contaminated soils and tailings on the surface and contain 237,000 tonnes of arsenic dust that are stored underground at the Giant Mine. Using documentary sources and statements of Yellowknives Dene members before various public hearings on the arsenic issue, this paper examines the history of arsenic pollution at Giant Mine as a form of “slow violence,” a concept that reconfigures the arsenic issue not simply as a technical problem, but as a historical agent of colonial dispossession that alienated an Indigenous group from their traditional territory. The long-term storage of arsenic at the former mine site means the effects of this slow violence are not merely historical, but extend to the potentially far distant future.