970 resultados para microflow cytometry
Resumo:
The detection and potential treatment of oxidative stress in biological systems has been explored using isoindoline-based nitroxide radicals. A novel tetraethyl-fluorescein nitroxide was synthesised for its use as a profluorescent probe for redox processes in biological systems. This tetraethyl system, as well as a tetramethyl-fluorescein nitroxide, were shown to be sensitive and selective probes for superoxide in vitro. The redox environment of cellular systems was also explored using the tetramethylfluorescein species based on its reduction to the hydroxylamine. Flow cytometry was employed to assess the extent of nitroxide reduction, reflecting the overall cellular redox environment. Treatment of normal fibroblasts with rotenone and 2-deoxyglucose resulted in an oxidising cellular environment as shown by the lack of reduction of the fluorescein-nitroxide system. Assessment of the tetraethyl-fluorescein nitroxide system in the same way demonstrated its enhanced resistance to reduction and offers the potential to detect and image biologically relevant reactive oxygen species directly. Importantly, these profluorescent nitroxide compounds were shown to be more effective than the more widely used and commercially available probes for reactive oxygen species such as 2’,7’-dichlorodihydrofluorescein diacetate. Fluorescence imaging of the tetramethyl-fluorescein nitroxide and a number of other rhodamine-nitroxide derivatives was undertaken, revealing the differential cellular localisation of these systems and thus their potential for the detection of redox changes in specific cellular compartments. As well as developing novel methods for the detection of oxidative stress, a number of novel isoindoline nitroxides were synthesised for their potential application as small-molecule antioxidants. These compounds incorporated known pharmacophores into the isoindoline-nitroxide structure in an attempt to increase their efficacy in biological systems. A primary and a secondary amine nitroxide were synthesised which incorporated the phenethylamine backbone of the sympathomimetic amine class of drugs. Initial assessment of the novel primary amine derivative indicated a protective effect comparable to that of 5-carboxy-1,1,3,3- tetramethylisoindolin-2-yloxyl. Methoxy-substituted nitroxides were also synthesised as potential antioxidants for their structural similarity to some amphetamine type stimulants. A copper-catalysed methodology provided access to both the mono- and di-substituted methoxy-nitroxides. Deprotection of the ethers in these compounds using boron tribromide successfully produced a phenolnitroxide, however the catechol moiety in the disubstituted derivative appeared to undergo reaction with the nitroxide to produce quinone-like degradation products. A novel fluoran-nitroxide was also synthesised from the methoxy-substituted nitroxide, providing a pH-sensitive spin probe. An amino-acid precursor containing a nitroxide moiety was also synthesised for its application as a dual-action antioxidant. N-Acetyl protection of the nitroxide radical was necessary prior to the Erlenmeyer reaction with N-acetyl glycine. Hydrolysis and reduction of the azlactone intermediate produced a novel amino acid precursor with significant potential as an effective antioxidant.
Resumo:
Background Late stage Ovarian Cancer is essentially incurable primarily due to late diagnosis and its inherent heterogeneity. Single agent treatments are inadequate and generally lead to severe side effects at therapeutic doses. It is crucial to develop clinically relevant novel combination regimens involving synergistic modalities that target a wider repertoire of cells and lead to lowered individual doses. Stemming from this premise, this is the first report of two- and three-way synergies between Adenovirus-mediated Purine Nucleoside Phosphorylase based gene directed enzyme prodrug therapy (PNP-GDEPT), docetaxel and/or carboplatin in multidrug-resistant ovarian cancer cells. Methods The effects of PNP-GDEPT on different cellular processes were determined using Shotgun Proteomics analyses. The in vitro cell growth inhibition in differentially treated drug resistant human ovarian cancer cell lines was established using a cell-viability assay. The extent of synergy, additivity, or antagonism between treatments was evaluated using CalcuSyn statistical analyses. The involvement of apoptosis and implicated proteins in effects of different treatments was established using flow cytometry based detection of M30 (an early marker of apoptosis), cell cycle analyses and finally western blot based analyses. Results Efficacy of the trimodal treatment was significantly greater than that achieved with bimodal- or individual treatments with potential for 10-50 fold dose reduction compared to that required for individual treatments. Of note was the marked enhancement in apoptosis that specifically accompanied the combinations that included PNP-GDEPT and accordingly correlated with a shift in the expression of anti- and pro-apoptotic proteins. PNP-GDEPT mediated enhancement of apoptosis was reinforced by cell cycle analyses. Proteomic analyses of PNP-GDEPT treated cells indicated a dowregulation of proteins involved in oncogenesis or cancer drug resistance in treated cells with accompanying upregulation of apoptotic- and tumour- suppressor proteins. Conclusion Inclusion of PNP-GDEPT in regular chemotherapy regimens can lead to significant enhancement of the cancer cell susceptibility to the combined treatment. Overall, these data will underpin the development of regimens that can benefit patients with late stage ovarian cancer leading to significantly improved efficacy and increased quality of life.
Resumo:
The epithelium of the corneolimbus contains stem cells for regenerating the corneal epithelium. Diseases and injuries affecting the limbus can lead to a condition known as limbal stem cell deficiency (LSCD), which results in loss of the corneal epithelium, and subsequent chronic inflammation and scarring of the ocular surface. Advances in the treatment of LSCD have been achieved through use of cultured human limbal epithelial (HLE) grafts to restore epithelial stem cells of the ocular surface. These epithelial grafts are usually produced by the ex vivo expansion of HLE cells on human donor amniotic membrane (AM), but this is not without limitations. Although AM is the most widely accepted substratum for HLE transplantation, donor variation, risk of disease transfer, and rising costs have led to the search for alternative biomaterials to improve the surgical outcome of LSCD. Recent studies have demonstrated that Bombyx mori silk fibroin (hereafter referred to as fibroin) membranes support the growth of primary HLE cells, and thus this thesis aims to explore the possibility of using fibroin as a biomaterial for ocular surface reconstruction. Optimistically, the grafted sheets of cultured epithelium would provide a replenishing source of epithelial progenitor cells for maintaining the corneal epithelium, however, the HLE cells lose their progenitor cell characteristics once removed from their niche. More severe ocular surface injuries, which result in stromal scarring, damage the epithelial stem cell niche, which subsequently leads to poor corneal re-epithelialisation post-grafting. An ideal solution to repairing the corneal limbus would therefore be to grow and transplant HLE cells on a biomaterial that also provides a means for replacing underlying stromal cells required to better simulate the normal stem cell niche. The recent discovery of limbal mesenchymal stromal cells (L-MSC) provides a possibility for stromal repair and regeneration, and therefore, this thesis presents the use of fibroin as a possible biomaterial to support a three dimensional tissue engineered corneolimbus with both an HLE and underlying L-MSC layer. Investigation into optimal scaffold design is necessary, including adequate separation of epithelial and stromal layers, as well as direct cell-cell contact. Firstly, the attachment, morphology and phenotype of HLE cells grown on fibroin were directly compared to that observed on donor AM, the current clinical standard substrate for HLE transplantation. The production, transparency, and permeability of fibroin membranes were also evaluated in this part of the study. Results revealed that fibroin membranes could be routinely produced using a custom-made film casting table and were found to be transparent and permeable. Attachment of HLE cells to fibroin after 4 hours in serum-free medium was similar to that supported by tissue culture plastic but approximately 6-fold less than that observed on AM. While HLE cultured on AM displayed superior stratification, epithelia constructed from HLE on fibroin maintained evidence of corneal phenotype (cytokeratin pair 3/12 expression; CK3/12) and displayed a comparable number and distribution of ÄNp63+ progenitor cells to that seen in cultures grown on AM. These results confirm the suitability of membranes constructed from silk fibroin as a possible substrate for HLE cultivation. One of the most important aspects in corneolimbal tissue engineering is to consider the reconstruction of the limbal stem cell niche to help form the natural limbus in situ. MSC with similar properties to bone marrow derived-MSC (BM-MSC) have recently been grown from the limbus of the human cornea. This thesis evaluated methods for culturing L-MSC and limbal keratocytes using various serum-free media. The phenotype of resulting cultures was examined using photography, flow cytometry for CD34 (keratocyte marker), CD45 (bone marrow-derived cell marker), CD73, CD90, CD105 (collectively MSC markers), CD141 (epithelial/vascular endothelial marker), and CD271 (neuronal marker), immunocytochemistry (alpha-smooth muscle actin; á-sma), differentiation assays (osteogenesis, adipogenesis and chrondrogenesis), and co-culture experiments with HLE cells. While all techniques supported to varying degrees establishment of keratocyte and L-MSC cultures, sustained growth and serial propagation was only achieved in serum-supplemented medium or the MesenCult-XF„¥ culture system (Stem Cell Technologies). Cultures established in MesenCult-XF„¥ grew faster than those grown in serum-supplemented medium and retained a more optimal MSC phenotype. L-MSC cultivated in MesenCult-XFR were also positive for CD141, rarely expressed £\-sma, and displayed multi-potency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of L-MSC established in MesenCult-XF„¥ medium. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker £GNp63, along with the corneal differentiation marker CK3/12. Our findings conclude that MesenCult-XFR is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells. Following on from the findings of the previous two parts, silk fibroin was tested as a novel dual-layer construct containing both an epithelium and underlying stroma for corneolimbal reconstruction. In this section, the growth and phenotype of HLE cells on non-porous versus porous fibroin membranes was compared. Furthermore, the growth of L-MSC in either serum-supplemented medium or the MesenCult-XFR culture system within fibroin fibrous mats was investigated. Lastly, the co-culture of HLE and L-MSC in serum-supplemented medium on and within fibroin dual-layer constructs was also examined. HLE on porous membranes displayed a flattened and squamous monolayer; in contrast, HLE on non-porous fibroin appeared cuboidal and stratified closer in appearance to a normal corneal epithelium. Both constructs maintained CK3/12 expression and distribution of £GNp63+ progenitor cells. Dual-layer fibroin scaffolds consisting of HLE cells and L-MSC maintained a similar phenotype as on the single layers alone. Overall, the present study proposed to create a three dimensional limbal tissue substitute of HLE cells and L-MSC together, ultimately for safe and beneficial transplantation back into the human eye. The results show that HLE and L-MSC can be cultivated separately and together whilst maintaining a clinically feasible phenotype containing a majority of progenitor cells. In addition, L-MSC were able to be cultivated routinely in the MesenCult-XF® culture system while maintaining a high purity for the MSC characteristic phenotype. However, as a serum-free culture medium was not found to sustain growth of both HLE and L-MSC, the combination scaffold was created in serum-supplemented medium, indicating that further refinement of this cultured limbal scaffold is required. This thesis has also demonstrated a potential novel marker for L-MSC, and has generated knowledge which may impact on the understanding of stromal-epithelial interactions. These results support the feasibility of a dual-layer tissue engineered corneolimbus constructed from silk fibroin, and warrant further studies into the potential benefits it offers to corneolimbal tissue regeneration. Further refinement of this technology should explore the potential benefits of using epithelial-stromal co-cultures with MesenCult-XF® derived L-MSC. Subsequent investigations into the effects of long-term culture on the phenotype and behaviour of the cells in the dual-layer scaffolds are also required. While this project demonstrated the feasibility in vitro for the production of a dual-layer tissue engineered corneolimbus, further studies are required to test the efficacy of the limbal scaffold in vivo. Future in vivo studies are essential to fully understand the integration and degradation of silk fibroin biomaterials in the cornea over time. Subsequent experiments should also investigate the use of both AM and silk fibroin with epithelial and stromal cell co-cultures in an animal model of LSCD. The outcomes of this project have provided a foundation for research into corneolimbal reconstruction using biomaterials and offer a stepping stone for future studies into corneolimbal tissue engineering.
Resumo:
Background: Mesenchymal stromal cells (MSC) with similar properties to bone marrow derived mesenchymal stromal cells (BM-MSC) have recently been grown from the limbus of the human cornea. We presently contribute to this novel area of research by evaluating methods for culturing human limbal MSC (L-MSC). Methods: Four basic strategies are compared: serum-supplemented medium (10% foetal bovine serum; FBS), standard serum-free medium supplemented with B-27, epidermal growth factor, and fibroblast growth factor 2, or one of two commercial serum-free media including Defined Keratinocyte Serum Free Medium (Invitrogen), and MesenCult-XF (Stem Cell Technologies). The phenotype of resulting cultures was examined using photography, flow cytometry (for CD34, CD45, CD73, CD90, CD105, CD141, CD271), immunocytochemistry (α-sma), differentiation assays (osteogenesis, adipogenesis, chrondrogenesis), and co-culture experiments with human limbal epithelial (HLE) cells. Results: While all techniques supported to varying degrees establishment of cultures, sustained growth and serial propagation was only achieved in 10% FBS medium or MesenCult-XF medium. Cultures established in 10% FBS medium were 70-80% CD34-/CD45-/CD90+/CD73+/CD105+, approximately 25% α-sma+, and displayed multi-potency. Cultures established in MesenCult-XF were >95% CD34-/CD45-/CD90+/CD73+/CD105+, 40% CD141+, rarely expressed α-sma, and displayed multi-potency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of MesenCult-XF-grown L-MSC. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker ∆Np63, along with the corneal differentiation marker cytokeratin 3. Conclusions: We conclude that MesenCult-XF® is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells.
Resumo:
Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) that is activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. Cleavage of this receptor exposes a neoepitope, termed the tethered ligand (TL), which binds intramolecularly within the receptor to stimulate signal transduction via coupled G proteins. PAR2-mediated signal transduction is also experimentally stimulated by hexapeptides (agonist peptides; APs) that are homologous to the TL sequence. Due to the irreversible nature of PAR2 proteolysis, downstream signal transduction is tightly regulated. Following activation, PAR2 is rapidly uncoupled from downstream signalling by the post-translational modifications phosphorylation and ubiquination which facilitate interactions with â- arrestin. This scaffolding protein couples PAR2 to the internalisation machinery initiating its desensitisation and trafficking through the early and late endosomes followed by receptor degradation. PAR2 is widely expressed in mammalian tissues with key roles for this receptor in cardiovascular, respiratory, nervous and musculoskeletal systems. This receptor has also been linked to pathological states with aberrant expression and signalling noted in several cancers. In prostate cancer, PAR2 signalling induces migration and proliferation of tumour derived cell lines, while elevated receptor expression has been noted in malignant tissues. Importantly, a role for this receptor has also been suggested in prostate cancer bone metastasis as coexpression of PAR2 and a proteolytic activator has been demonstrated by immunohistochemical analysis. Based on these data, the primary focus of this project has been on two aspects of PAR2 biology. The first is characterisation of cellular mechanisms that regulate PAR2 signalling and trafficking. The second aspect is the role of this receptor in prostate cancer bone metastasis. In addition, to permit these studies, it was first necessary to evaluate the specificity of the commercially available anti-PAR2 antibodies SAM11, C17, N19 and H99. The evaluation of the four commercially available antibodies was assessed using four techniques: immunoprecipitation; Western blot analysis; immunofluorescence; and flow cytometry. These approaches demonstrated that three of the antibodies efficiently detect ectopically expressed PAR2 by each of these techniques. A significant finding from this study was that N19 was the only antibody able to specifically detect N-glycosylated endogenous PAR2 by Western blot analysis. This analysis was performed on lysates from prostate cancer derived cell lines and tissue derived from wildtype and PAR2 knockout mice. Importantly, further evaluation demonstrated that this antibody also efficiently detects endogenous PAR2 at the cell surface by flow cytometry. The anti-PAR2 antibody N19 was used to explore the in vitro role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Significantly, use of the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling experiments using two approaches which showed that PAR2 stably expressed by CHO cells is palmitoylated and that palmitoylation occurs on cysteine 361. Another key finding from this study is that palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ~9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. Importantly, this study also identified that palmitoylation of this receptor within the Golgi apparatus is required for efficient agonist-induced rab11amediated trafficking of PAR2 to the cell surface. Interestingly, palmitoylation is also required for receptor desensitization, as agonist-induced â-arrestin recruitment and receptor degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. Collectively, these data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor. This project also evaluated PAR2 residues involved in ligand docking. Although the extracellular loop (ECL)2 of PAR2 is known to be required for agonist-induced signal transduction, the binding pocket for receptor agonists remains to be determined. In silico homology modelling, based on a crystal structure for the prototypical GPCR rhodopsin, and ligand docking were performed to identify PAR2 transmembrane (TM) amino acids potentially involved in agonist binding. These methods identified 12 candidate residues that were mutated to examine the binding site of the PAR2 TL, revealed by trypsin cleavage, as well as of the soluble ligands 2f-LIGRLO-NH2 and GB110, which are both structurally based on the AP SLIGRLNH2. Ligand binding was evaluated from the impact of the mutated residues on PAR2-mediated calcium mobilisation. An important finding from these experiments was that mutation of residues Y156 and Y326 significantly reduced 2f-LIGRLO-NH2 and GB110 agonist activity. L307 was also important for GB110 activity. Intriguingly, mutation of PAR2 residues did not alter trypsin-induced signalling to the same extent as for the soluble agonists. The reason for this difference remains to be further examined by in silico and in vitro experimentation and, potentially, crystal structure studies. However, these findings identified the importance of TM domains in PAR2 ligand docking and will enhance the design of both PAR2 agonists and potentially agents to inhibit signalling (antagonists). The potential importance of PAR2 in prostate cancer bone metastasis was examined using a mouse model. In patients, prostate cancer bone metastases cause bone growth by disrupting bone homeostasis. In an attempt to mimic prostate cancer growth in bone, PAR2 responsive 22Rv1 prostate cancer cells, which form mixed osteoblastic and osteolytic lesions, were injected into the proximal aspect of mouse tibiae. A role for PAR2 was assessed by treating these mice with the recently developed PAR2 antagonist GB88. As controls, animals bearing intra-tibial tumours were also treated with vehicle (olive oil) or the prostate cancer chemotherapeutic docetaxel. The effect of these treatments on bone was examined radiographically and by micro-CT. Consistent with previous studies, 22Rv1 tumours caused osteoblastic periosteal spicule formation and concurrent osteolytic bone loss. Significantly, blockade of PAR2 signalling reduced the osteoblastic and osteolytic phenotype of 22Rv1 tumours in bone. No bone defects were detected in mice treated with docetaxel. These qualitative data will be followed in the future by quantitative micro-CT analysis as well as histology and histomorphometry analysis of already collected tissues. Nonetheless, these preliminary experiments highlight a potential role for PAR2 in prostate cancer growth in bone. In summary, in vitro studies have defined mechanisms regulating PAR2 activation, downstream signalling and trafficking and in vivo studies point to a potential role for this receptor in prostate cancer bone metastasis. The outcomes of this project are that a greater understanding of the biology of PAR2 may lead to the development of strategies to modulate the function of this receptor in disease.
Resumo:
Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3alpha mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.
Resumo:
Circulating tumour cells (CTCs) have attracted much recent interest in cancer research as a potential biomarker and as a means of studying the process of metastasis. It has long been understood that metastasis is a hallmark of malignancy, and conceptual theories on the basis of metastasis from the nineteenth century foretold the existence of a tumour "seed" which is capable of establishing discrete tumours in the "soil" of distant organs. This prescient "seed and soil" hypothesis accurately predicted the existence of CTCs; microscopic tumour fragments in the blood, at least some of which are capable of forming metastases. However, it is only in recent years that reliable, reproducible methods of CTC detection and analysis have been developed. To date, the majority of studies have employed the CellSearch™ system (Veridex LLC), which is an immunomagnetic purification method. Other promising techniques include microfluidic filters, isolation of tumour cells by size using microporous polycarbonate filters and flow cytometry-based approaches. While many challenges still exist, the detection of CTCs in blood is becoming increasingly feasible, giving rise to some tantalizing questions about the use of CTCs as a potential biomarker. CTC enumeration has been used to guide prognosis in patients with metastatic disease, and to act as a surrogate marker for disease response during therapy. Other possible uses for CTC detection include prognostication in early stage patients, identifying patients requiring adjuvant therapy, or in surveillance, for the detection of relapsing disease. Another exciting possible use for CTC detection assays is the molecular and genetic characterization of CTCs to act as a "liquid biopsy" representative of the primary tumour. Indeed it has already been demonstrated that it is possible to detect HER2, KRAS and EGFR mutation status in breast, colon and lung cancer CTCs respectively. In the course of this review, we shall discuss the biology of CTCs and their role in metastagenesis, the most commonly used techniques for their detection and the evidence to date of their clinical utility, with particular reference to lung cancer.
Resumo:
Murine intestinal intraepithelial lymphocytes (IEL) have been shown to contain subsets of alpha/beta TCR+ and gamma/delta TCR+ T cells that spontaneously produce cytokines such as IFN-gamma and IL-5. We have now determined the nature and cell cycle stage of these cytokine-producing T lymphocytes in EIL by using IFN-gamma- and IL-5-specific ELISPOT assay, cytokine-specific mRNA-cDNA dot-blot hybridization and polymerase chain reaction, and flow cytometry (FACS) for DNA analysis. When CD3+ T cells from IEL of normal C3H/HeN mice were separated into low and high density fractions by discontinuous Percoll gradients, IFN-gamma and IL-5 spot-forming cells were only found in the former population. Analysis of mRNA for these cytokines by both IFN-gamma- and IL-5-specific dot-blot hybridization and polymerase chain reaction revealed that higher levels of message for IFN-gamma and IL-5 were also seen in the low density fraction. However, cell cycle analysis of these two fractions by FACS using propidium iodide showed a similar pattern of cell cycle stages in both low and high density populations (G0 + G1 approximately 96 to 98% and S/G2 + M approximately 2 to 4%). Finally, mRNA from gamma/delta TCR+ and alpha/beta TCR+ T cells in both low and high density fractions of IEL were analyzed for IFN-gamma and IL-5 message by polymerase chain reaction. After 35 cycles of amplification, both gamma/delta TCR+ and alpha/beta TCR+ T cells in the low density fraction expressed higher levels of message for these two cytokines when compared with the high density population. These results have now shown that both gamma/delta and alpha/beta TCR+ IEL can be separated into low and high density subsets and both fractions possess a similar stage of cell cycle. However, only the low density cells (in G1 phase) of both gamma/delta and alpha/beta TCR types possess increased cytokine-specific mRNA and produce the cytokines IFN-gamma and IL-5. Our results suggest that alpha/beta TCR+ and gamma/delta TCR+ IEL can produce cytokines without cell proliferation.
Reduced Il17a expression distinguishes a Ly6cloMHCIIhi macrophage population promoting wound healing
Resumo:
Macrophages are the main components of inflammation during skin wound healing. They are critical in wound closure and in excessive inflammation, resulting in defective healing observed in chronic wounds. Given the heterogeneity of macrophage phenotypes and functions, we here hypothesized that different subpopulations of macrophages would have different and sometimes opposing effects on wound healing. Using multimarker flow cytometry and RNA expression array analyses on macrophage subpopulations from wound granulation tissue, we identified a Ly6cloMHCIIhi “noninflammatory” subset that increased both in absolute number and proportion during normal wound healing and was missing in Ob/Ob and MYD88−/− models of delayed healing. We also identified IL17 as the main cytokine distinguishing this population from proinflammatory macrophages and demonstrated that inhibition of IL17 by blocking Ab or in IL17A−/− mice accelerated normal and delayed healing. These findings dissect the complexity of the role and activity of the macrophages during wound inflammation and may contribute to the development of therapeutic approaches to restore healing in chronic wounds.
Resumo:
Oral squamous cell carcinomas (OSCC) often arise from dysplastic lesions. The role of cancer stem cells in tumour initiation is widely accepted, yet the potential existence of pre-cancerous stem cells in dysplastic tissue has received little attention. Cell lines from oral diseases ranging in severity from dysplasia to malignancy provide opportunity to investigate the involvement of stem cells in malignant progression from dysplasia. Stem cells are functionally defined by their ability to generate hierarchical tissue structures in consortium with spatial regulation. Organotypic cultures readily display tissue hierarchy in vitro; hence, in this study, we compared hierarchical expression of stem cell-associated markers in dermis-based organotypic cultures of oral epithelial cells from normal tissue (OKF6-TERT2), mild dysplasia (DOK), severe dysplasia (POE-9n) and OSCC (PE/CA P J15). Expression of CD44, p75NTR, CD24 and ALDH was studied in monolayers by flow cytometry and in organotypic cultures by immunohistochemistry. Spatial regulation of CD44 and p75NTR was evident for organotypic cultures of normal (OKF6-TERT2) and dysplasia (DOK and POE-9n) but was lacking for OSCC (PE/CA PJ15)-derived cells. Spatial regulation of CD24 was not evident. All monolayer cultures exhibited CD44, p75NTR, CD24 antigens and ALDH activity (ALDEFLUOR® assay), with a trend towards loss of population heterogeneity that mirrored disease severity. In monolayer, increased FOXA1 and decreased FOXA2 expression correlated with disease severity, but OCT3/4, Sox2 and NANOG did not. We conclude that dermis-based organotypic cultures give opportunity to investigate the mechanisms that underlie loss of spatial regulation of stem cell markers seen with OSCC-derived cells.
Resumo:
One important challenge for regenerative medicine is to produce a clinically relevant number of cells with consistent tissue-forming potential. Isolation and expansion of cells from skeletal tissues results in a heterogeneous population of cells with variable regenerative potential. A more consistent tissue formation could be achieved by identification and selection of potent progenitors based on cell surface molecules. In this study, we assessed the expression of stage-specific embryonic antigen-4 (SSEA-4), a classic marker of undifferentiated stem cells, and other surface markers in human articular chondrocytes (hACs), osteoblasts, and bone marrow-derived mesenchymal stromal cells (bmMSCs) and characterized their differentiation potential. Further, we sorted SSEA-4-expressing hACs and followed their potential to proliferate and to form cartilage in vitro. Cells isolated from cartilage and bone exhibited remarkably heterogeneous SSEA-4 expression profiles in expansion cultures. SSEA-4 expression levels increased up to approximately 5 population doublings, but decreased following further expansion and differentiation cultures; levels were not related to the proliferation state of the cells. Although SSEA-4-sorted chondrocytes showed a slightly better chondrogenic potential than their SSEA-4-negative counterparts, differences were insufficient to establish a link between SSEA-4 expression and chondrogenic potential. SSEA-4 levels in bmMSCs also did not correlate to the cells' chondrogenic and osteogenic potential in vitro. SSEA-4 is clearly expressed by subpopulations of proliferating somatic cells with a MSC-like phenotype. However, the predictive value of SSEA-4 as a specific marker of superior differentiation capacity in progenitor cell populations from adult human tissue and even its usefulness as a stem cell marker appears questionable.
Resumo:
Purpose: We have evaluated the immunosuppressive properties of L-MSC with the view to using these cells in allogeneic cell therapies for corneal disorders. We hypothesized that L-MSC cultures would suppress T-cell activation, in a similar way to those established from human bone marrow (BM-MSC). Methods: MSC cultures were established from the limbal stroma of cadaveric donor eye tissue (up to 1 week postmortem) using either conventional serum-supplemented growth medium or a commercial serum-free medium optimized for bone marrow derived MSC (MesenCult-XF system). The MSC phenotype was examined by flow cytometry according to current and emerging markers for human MSC. Immunosuppressive properties were assessed using a mixed lymphocyte reaction (MLR) assay, whereby the white cell fraction from two immunologically incompatible blood donors are cultured together in direct contact with growth arrested MSC. T-cell activation (proliferation) was measured by uptake of tritiated thymidine. Human L-MSC were tested in parallel with human BM-MSC and rabbit L-MSC. Human and rabbit L-MSC were also tested for their ability to stimulate the growth of limbal epithelial (LE) cells in colony formation assays (for both human as well as rabbit LE cells). Results: L-MSC cultures were >95% negative for CD34, CD45 and HLA-DR and positive for CD73, CD90, CD105 and HLA-ABC. Modest levels (30%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented growth medium, but not those grown in MesenCult-XF. All MSC cultures derived from both human and rabbit tissue suppressed T-cell activation to varying degrees according to culture technique and species (MesenCult-XF >> serum-fed cultures, rabbit L-MSC >> human L-MSC). All L-MSC stimulated colony formation by LE cells irrespectively of the combination of cell species used. Conclusions: L-MSC display immunosuppressive qualities, in addition to their established non-immunogenic cell surface marker profile, and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic or even xenogeneic L-MSC in the treatment of corneal disorders.
Resumo:
Purpose: The silk protein fibroin provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial cells (Tissue Eng A. 14(2008)1203-11). We presently extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Methods: Primary cultures of HLS cells were established in DMEM/F12 medium supplemented with either 10% fetal bovine serum (FBS) or 2% B27 supplement. Defined keratinocyte serum-free medium (DK-SFM, Invitrogen) was also tested. The resulting cultures were analysed by flow cytometry for expression of CD34, CD90, CD45, and CD141. Cultures grown under each condition were subsequently passaged either onto transparent fibroin membranes prepared from purified fibroin or within 3D scaffolds prepared from partially-solubilised fibroin. Results: HLS cultures were successfully established under each condition, but grew more slowly and passaged poorly in the absence of serum. Cultures grown in 10% FBS were <0.5% CD34+ (keratocytes) and >97% CD90+ (fibroblasts). Cultures established in 2% B27 formed floating spheres and contained >8% CD34+ cells and reduced CD90 expression. Cultures established in DK-SFM displayed traces of epithelial cell growth (CD141), but mostly consisted of CD90+ cells with <1% CD34+ cells. Cells of bone marrow lineage (CD45) were rarely observed under any conditions. Cultures grown in 10% FBS were able to adhere to and proliferate on silk fibroin 3-D scaffolds and transparent films while those grown serum-free could not. Adhesion of HLS cells to fibroin was initially poorer than that displayed on tissue culture plastic. Conclusions: HLS cultures containing cells of predominantly fibroblast lineage can be grown on fibroin-based materials, but this process is dependent upon additional ECM factors such as those provided by serum.
Resumo:
Despite the Revised International Prognostic Index's (R-IPI) undoubted utility in diffuse large B-cell lymphoma (DLBCL), significant clinical heterogeneity within R-IPI categories persists. Emerging evidence indicates that circulating host immunity is a robust and R-IPI independent prognosticator, most likely reflecting the immune status of the intratumoral microenvironment. We hypothesized that direct quantification of immunity within lymphomatous tissue would better permit stratification within R-IPI categories. We analyzed 122 newly diagnosed consecutive DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemo-immunotherapy. Median follow-up was 4 years. As expected, the R-IPI was a significant predictor of outcome with 5-year overall survival (OS) 87% for very good, 87% for good, and 51% for poor-risk R-IPI scores (P < 0.001). Consistent with previous reports, systemic immunity also predicted outcome (86% OS for high lymphocyte to monocyte ratio [LMR], versus 63% with low LMR, P = 0.01). Multivariate analysis confirmed LMR as independently prognostic. Flow cytometry on fresh diagnostic lymphoma tissue, identified CD4+ T-cell infiltration as the most significant predictor of outcome with ≥23% infiltration dividing the cohort into high and low risk groups with regard to event-free survival (EFS, P = 0.007) and OS (P = 0.003). EFS and OS were independent of the R-IPI and LMR. Importantly, within very good/good R-IPI patients, CD4+ T-cells still distinguished patients with different 5 year OS (high 96% versus low 63%, P = 0.02). These results illustrate the importance of circulating and local intratumoral immunity in DLBCL treated with R-CHOP.