943 resultados para microcantilever sensors
Resumo:
This paper considers the problem of power management and throughput maximization for energy neutral operation when using Energy Harvesting Sensors (EHS) to send data over wireless links. It is assumed that the EHS are designed to transmit data at a constant rate (using a fixed modulation and coding scheme) but are power-controlled. A framework under which the system designer can optimize the performance of EHS when the channel is Rayleigh fading is developed. For example, the highest average data rate that can be supported over a Rayleigh fading channel given the energy harvesting capability, the battery power storage efficiency and the maximum allowed transmit energy per slot is derived. Furthermore, the optimum transmission scheme that guarantees a particular data throughput is derived. The usefulness of the framework developed is illustrated through simulation results for specific examples.
Resumo:
Polypyrrole exhibits reversible changes in their direct current resistance on exposure to organic volatiles. However, one needs to employ an array of such sensors to discriminate organic volatiles present in a mixture. Hence, polypyrrole based gas sensor is designed for the detection and discrimination of different organic volatiles. Multi frequency impedance measurement technique is used to detect the organic vapors, such as acetone, ethanol and Isopropyl alcohol, in the gas phase, over a frequency range 10 Hz to 2 MHz. The sensor response is monitored by measuring the changes in its capacitance, resistance and the dissipation factor upon exposure to organic volatiles. It is observed that the capacitive property of the sensor is more sensitive to these volatiles than its resistive property. Each volatile responds to the sensor in terms of dissipation factor at specific frequency and found that the peak magnitude has a linear relationship with their concentrations.
Resumo:
Donor-doped n-BaTiO3 polycrystalline ceramics show a strong negative temperature coefficient of resistivity below the orthorhombic-rhombohedral phase transition point, from 10(2-3) Omega cm af 190 K to 10(10-13) Omega cm at less than or similar to 50 K, with thermal coefficient of resistance alpha = 20-23% K-1. Stable thermal sensors for low-temperature applications are realized therefrom. The negative temperature coefficient of resistivity region can be modified by substituting isovalent ions in the lattice. Highly nonlinear current-voltage (I-V) curves are observed at low temperatures, with a voltage maximum followed by the negative differential resistance. The I-V curves are sensitive to dissipation so that cryogenic sensors can be fabricated for liquid level control, flow rate monitoring, radiation detection or in-rush voltage limitation.
Resumo:
The humidity, heat flux and mass flow sensing capability of n-BaTiO3 and its solid solutions were evaluated based on their dissipation characteristics. The cubic/tetragonal phase content of the ceramics seem to play an important role in their sensitivity towards the measurand. The humidity-sensitive characteristics of these perovskites were studied with respect to different moisture sensitive coating materials. The sensor was also used to determine the heat of hydration during the curing process of cements and the mass flow rate of the gases. For all these applications, suitable operating points have been fixed from the highly non-linear I-V characteristics with the retention of good stability and high sensitivity. (C) 1997 Elsevier Science S.A.
Resumo:
In this paper, power management algorithms for energy harvesting sensors (EHS) that operate purely based on energy harvested from the environment are proposed. To maintain energy neutrality, EHS nodes schedule their utilization of the harvested power so as to save/draw energy into/from an inefficient battery during peak/low energy harvesting periods, respectively. Under this constraint, one of the key system design goals is to transmit as much data as possible given the energy harvesting profile. For implementational simplicity, it is assumed that the EHS transmits at a constant data rate with power control, when the channel is sufficiently good. By converting the data rate maximization problem into a convex optimization problem, the optimal load scheduling (power management) algorithm that maximizes the average data rate subject to energy neutrality is derived. Also, the energy storage requirements on the battery for implementing the proposed algorithm are calculated. Further, robust schemes that account for the insufficiency of battery storage capacity, or errors in the prediction of the harvested power are proposed. The superior performance of the proposed algorithms over conventional scheduling schemes are demonstrated through computations using numerical data from solar energy harvesting databases.
Resumo:
A wireless Energy Harvesting Sensor (EHS) needs to send data packets arriving in its queue over a fading channel at maximum possible throughput while ensuring acceptable packet delays. At the same time, it needs to ensure that energy neutrality is satisfied, i.e., the average energy drawn from a battery should equal the amount of energy deposited in it minus the energy lost due to the inefficiency of the battery. In this work, a framework is developed under which a system designer can optimize the performance of the EHS node using power control based on the current channel state information, when the EHS node employs a single modulation and coding scheme and the channel is Rayleigh fading. Optimal system parameters for throughput optimal, delay optimal and delay-constrained throughput optimal policies that ensure energy neutrality are derived. It is seen that a throughput optimal (maximal) policy is packet delay-unbounded and an average delay optimal (minimal) policy achieves negligibly small throughput. Finally, the influence of the harvested energy profile on the performance of the EHS is illustrated through the example of solar energy harvesting.
Resumo:
This paper presents concepts, designs, and working prototypes of enhanced laparoscopic surgical tools. The enhancements are in equipping the tool with force and temperature sensing as well as image acquisition for stereo vision. Just as the pupils of our eyes are adequately spaced out and the distance between them is adjustable, two minute cameras mounted on a mechanism in our design can be moved closer or farther apart inside the inflated abdomen during the surgery. The cameras are fitted to a deployable mechanism consisting of flexural joints so that they can be inserted through a small incision and then deployed and moved as needed.A temperature sensor and a force sensor are mounted on either of the gripping faces of the surgical grasping tool to measure the temperature and gripping force, which need to be controlled for safe laparoscopic surgery. The sensors are small enough and hence they do not cause interference during surgery and insertion.Prototyping and working of the enhanced laparoscopic tool are presented with details
Resumo:
In this paper we incorporate a novel approach to synthesize a class of closed-loop feedback control, based on the variational structure assignment. Properties of a viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. Wave dispersion properties of onedimensional beam system have been studied. Efficiency of the chosen viscoelastic model in enhancing damping and stability properties of one-dimensional viscoelastic bar have been analyzed. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These assign the phenomenology based internal strain rate damping parameter of a viscoelastic system to the usual elastic structure but with active control. In the formulation a model of cantilever beam with non-collocated actuator and sensor has been considered. The formulation leads to the matrix identification problem of two dynamic stiffness matrices. The method has been simplified to obtain control system gains for the free vibration control of a cantilever beam system with collocated actuator-sensor, using quadratic optimal control and pole-placement methods.
Resumo:
In this thesis we address the problem of multi-agent search. We formulate two deploy and search strategies based on optimal deployment of agents in search space so as to maximize the search effectiveness in a single step. We show that a variation of centroidal Voronoi configuration is the optimal deployment. When the agents have sensors with different capabilities, the problem will be heterogeneous in nature. We introduce a new concept namely, generalized Voronoi partition in order to formulate and solve the heterogeneous multi-agent search problem. We address a few theoretical issues such as optimality of deployment, convergence and spatial distributedness of the control law and the search strategies. Simulation experiments are carried out to compare performances of the proposed strategies with a few simple search strategies.