991 resultados para methanol electro-oxidation
Resumo:
The development and optimization of electrocatalysts for application in fuel cell systems have been the focus of a variety of studies where core–shell structures have been considered as a promising alternative among the materials studied. We synthesized core–shell nanoparticles of Sn x @Pt y and Rh x @Pt y (Sn@Pt, Sn@Pt2, Sn@Pt3, Rh@Pt, Rh@Pt2, and Rh@Pt3) through a reduction methodology using sodium borohydride. These nanoparticles were electrochemically characterized by cyclic voltammetry and further analyzed by cyclic voltammetry studying their catalytic activity toward glycerol electro-oxidation; chronoamperometry and potentiostatic polarization experiments were also carried out. The physical characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The onset potential for glycerol oxidation was shifted in 130 and 120 mV on the Sn@Pt3/C and Rh@Pt3/C catalysts, respectively, compared to commercial Pt/C, while the stationary pseudo-current density, taken at 600 mV, increased 2-fold and 5-fold for these catalysts related to Pt/C, respectively. Thus, the catalysts synthesized by the developed methodology have enhanced catalytic activity toward the electro-oxidation of glycerol, representing an interesting alternative for fuel cell systems.
Resumo:
In this work it is demonstrated that Pt electrodes can be activated by cathodic polarisation in the hydrogen evolution region which makes it prone to oxidation at potentials below that of bulk oxide formation. When an activated Pt electrode is placed in an aqueous HAuCl4 solution the electroless deposition of Au onto the surface of the electrode is observed and confirmed by cyclic voltammetry and XPS measurements. It is demonstrated that the oxidation of active Pt surface atoms provides the driving force for the spontaneous reduction of Au3+ ions into metallic Au to generate a Pt/Au surface which is highly active for the electro-oxidation of ethanol.
Resumo:
Electro-oxidation of Mn2+ to MnO2 by cyclic voltammetry on gold in acidic (0.1 M H2SO4) and neutral (0.1 M Na2SO4) media was studied using electrochemical quartz-crystal microbalance (EQCM). The cyclic voltammetric behavior of Au is different in these electrolytes. From EQCM data of mass variation during cycling, the rate of electrodeposition of MnO2 is higher in the neutral medium than in the acidic medium. Specific capacitance of MnO2 deposited from the neutral medium is higher than that deposited from the acidic medium owing to different crystallographic structures.
Resumo:
A combined electrochemical method and X-ray photo electron spectroscopy (XPS) has been utilized to understand the Pd(2+)/CeO(2) interaction in Ce(1-x)Pd(x)O(2-delta) (x = 0.02). A constant positive potential (chronoamperometry) is applied to Ce(0.98)Pd(0.02)O(2-delta) working electrode which causes Ce(4+) to reduce to Ce(3+) to the extent of similar to 35%, while Pd remains in the +2 oxidation state. Electrochemically cycling this electrode between 0.0-1.2 V reverts back to the original state of the catalyst. This reversibility is attributed to the reversible reduction of Ce(4+) to Ce(3+) state. CeO(2) electrode with no metal component reduces to CeO(2-y) (y similar to 0.4) after applying 1.2 V which is not reversible and the original composition of CeO(2) cannot be brought back in any electrochemical condition. During the electro-catalytic oxygen evolution reaction at a constant 1.2 V for 1000 s, Ce(0.98)Pd(0.02)O(2-delta) reaches a steady state composition with Pd in the +2 states and Ce(4+) : Ce(3+) in the ratio of 0.65 : 0.35. This composition can be denoted as Ce(0.63)(4+)Ce(0.35)(4+)Pd(0.02)O(2-delta-y) (y similar to 0.17). When pure CeO(2) is put under similar electrochemical condition, it never reaches the steady state composition and reduces almost to 85%. Thus, Ce(0.98)Pd(0.02)O(2-delta) forms a stable electrode for the electro-oxidation of H(2)O to O(2) unlike CeO(2) due to the metal support interaction.
Resumo:
The superior catalytic activity along with improved CO tolerance for formic acid electro-oxidation has been demonstrated on a NiO-decorated reduced graphene oxide (rGO) catalyst. The cyclic voltammetry response of rGO-NiO/Pt catalyst elucidates improved CO tolerance and follows direct oxidation pathway. It is probably due to the beneficial effect of residual oxygen groups on rGO support which is supported by FT-IR spectrum. A strong interaction of rGO support with NiO nanoparticles facilitates the removal of CO from the catalyst surface. The chronoamperometric response indicates a higher catalytic activity and stability of rGO-NiO/Pt catalyst than the NiO/Pt and unmodified Pt electrode catalyst for a prolonged time of continuous oxidation of formic acid. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
燃料电池以其高效、环境友好的发电方式,被誉为21世纪的能源技术。其中,直接甲醇燃料电池(DMFC)更以燃料甲醇来源丰富,价格低廉,储存、携带方便而成为近年的研究热点。但是,DMFC在其实用化之前还需要解决一些重要问题,其中的关键之一就是高性能的贵金属催化剂的研究。我们知道,甲醇的电化学活性要低于氢气三个数量级;而且甲醇在R表面进行电化学氧化时,其中间解离吸附产物会造成贵金属催化剂中毒,显著降低了催化剂的活性。因此,要使DMFC具有相当高的电流密度和运行稳定性,就需要对贵金属催化剂制备进行不断的研究和改进。在本文的工作中,主要从Pt/C催化剂的制备方法、新型碳纳米管载体、稀土助催化剂等三个方面进行了研究和探索,取得的具体结果如下:1.Pt/C催化剂制备方法的研究与改进(1)在本组已有的研究结果基础上,对预沉积还原法进行了一些改进,采用原子吸收光谱(AAS)进行表征,发现Pt的利用率得到了明显的提高。采用X射线衍射。(RD)、透射电子显微镜(TEM)和BET表征铂的粒径、晶态结构和催化剂特性,分析表明,经过改进的预沉积还原法制备的催化剂仍然具有良好的分散性、较小的粒径、较低的晶态结构和良好的催化剂特性,电化学测试证明其性能要优于同等的E-TEK催化剂。(2)借鉴冶金学中的相关技术,提出了一种新的Pt/C催化剂制备方法一程序升温焙烧法。该方法的具体步骤增强了金属催化剂粒子和碳载体之间的相互作用力,提高了碳载体的导电性,并且形成了部分有利于催化反应进行的活性晶态结构。得到的R/C催化剂获得了近似E-TEK催化剂的催化活性,在具体方法上仍有改进的潜力。采用了同(1)的催化剂表征方法。2.甲醇电化学氧化稀土助催化剂研究在直接甲醇燃料电池Pt/C催化剂的研究过程中,一个重要的方面就是助催化剂的研究,并且已经得到了较好的结果。本工作选用了稀土元素为研究对象,因为稀土元素属于过渡金属,具有丰富的d电子轨道,易于和金属形成强的类化学键的吸附作用,并且能够和有机小分子形成多种配位化合物。经过初步的工作,发现了有些稀土离子如Sm3+能够在Pt表面吸附并且对甲醇电化学氧化具有较稳定的促进作用,采用循环伏安法,计时电流,交流阻抗等电化学方法进行了表征。根据实验结果,对其反应机理进行了初步的探讨。3.碳纳米管(CNTs)作为贵金属催化剂载体的研究碳纳米管(CNTs)由于其结构上的特殊性(径向尺寸为纳米量级,轴向尺寸为微米量级)而表现出典型的一维量子材料,同时具有较高的机械强度和超常的电学性能,能够为化学反应提供纳米级的反应场所,因此受到了化学界包括电化学研究人员的极大关注。已经在作为贵金属催化剂载体方面进行了一些研究,本工作的主要内容就是针对Pt/CNTs催化剂对碳纳米管的要求,对其预处理方法进行了改进,采用了如(1)中的催化剂表征方法和(2)中的相关电化学方法进行测定,发现碳纳米管作为贵金属催化剂载体时,对它的纯化处理方法的不同明显地影响了其载体性质和催化剂的活性。
Resumo:
It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode.
Resumo:
Pd-Au/C and Pd-Ag/C were found to have a unique characteristic of evolving high-quality hydrogen dramatically and steadily from the catalyzed decomposition of liquid formic acid at convenient temperature, and further this was improved by the addition of CeO2(H2O)(x).
Resumo:
The controllable synthesis of nanosized carbon-supported Pd catalysts through a surface replacement reaction (SRR) method is reported in this paper. Depending on the synthesis conditions the Pd can be formed on Co nanoparticles surface in hollow nanospheres or nanoparticles structures. Citrate anion acts as a stabilizer for the nanostructures, and protonation of the third carboxyl anion and hence the nanostructure and size of the resulting catalysts are controlled via the pH of the synthesis solution. Pd hollow nanospheres, containing smaller Pd nanoparticles, supported on carbon are formed under the condition of pH 9 reaction solution. Meanwhile, highly dispersed carbon-supported Pd nanoparticles can be formed with higher pH (pH >= 10). All catalysts prepared through the SRR method show enhanced activities for the HCOOH electro-oxidation reaction compared to catalysts reduced by NaBH4.
Resumo:
A special electrodeposition process of palladium was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and in situ scanning tunneling microscopy (STM). A kind of palladium(IV) complex was attached to the highly oriented pyrolytic graphite (HOPG) electrode surface by electro-oxidation of palladium(II) complex first, and was then reduced to palladium particles. The surface complexes and particles of palladium were both characterized by in situ STM and XPS. The Pd particles are in the nanometer range of size and exhibit electrocatalytic activity towards the oxidation of hydrazine and hydroxylamine.
Resumo:
The electro-oxidation of PtCl42- was studied on a glassy carbon (GC) electrode. A Pt(IV) complex was formed on the electrode surface through coordination to the oxygen atom of an oxide functional group on the electrode, which results in its deactivation. The ferri/ferrocyanide redox couple was used as a probe to examine the activity of the GC electrode. X-ray photoelectron spectroscopy was employed to characterize the platinum on the electrode surface, and showed that the oxidation state of the Pt element changes depending on the electrochemical treatment of GC electrode. The platinum complex on the surface of the GC electrode can be transformed to Pt-0 by cycling the electrode between -0.25 and +1.65 V/SCE in 0.1 M H2SO4 solution. The above procedure can be used to disperse platinum ultramicroparticles on the surface of a GC electrode.
Resumo:
The electro-oxidation of bilirubin (BR) in aqueous solution was investigated by cyclic voltammetry and in-situ thin-layer spectroelectrochemical techniques, It was found that both oxidation processes of BR are two electron transfer reactions. A mechanism
Resumo:
Chemically modified electrodes prepared by adsorbing prussian blue on a glassy carbon electrode are shown to catalyse the electro-oxidation of cysteine, N-acetylcysteine and glutathione in acidic media. The catalytic response is evaluated with respect to the potential scan rate, the solution pH, the concentration dependence, and other variables. Covering the electrode with Nafion(R) film improved the stability and reproducibility in liquid chromatography with electrochemical detection to the extent that repetitive sample injections produced relative standard deviations of less than 5% over several hours of operation. The limit of detection was 4 pmol for cysteine, 33 pmol for glutathione and 61 pmol for N-acetylcysteine.
Resumo:
The electrochemical reduction of benzoic acid in the presence and absence of hydrogen (H-2) has been investigated using a 10 mu m diameter platinum microelectrode in four different room temperature ionic liquids (RTILs), namely [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf] and [C(4)mim][BF4], versus Ag/Ag+. In all cases, reductive voltammetry is observed, and is suggested to occur via a CE mechanism in which dissociation of benzoic acid is followed by electron transfer to H+ ultimately forming adsorbed hydrogen. Furthermore, the adsorbed H atoms, formed from the reduction of benzoic acid, could be used to achieve the rapid hydrogenolysis of the organic compound (bis(benzyloxycarbonyl)-L-lysine) on the timescale of the voltammetric technique under moderate conditions (25 degrees C).
Resumo:
Pt and PtSn catalysts were studied for n-butanol electro-oxidation at various temperatures. PtSn showed a higher activity towards butanol electro-oxidation compared to Pt in acidic media. The onset potential for n-butanol oxidation on PtSn is ~520 mV lower than that found on Pt, and significantly lower activation energy was found for PtSn compared with that for Pt.