983 resultados para meteoric flux
Resumo:
Les membranes de dialyse à haut flux et à faible flux pourraient être liées à différents profils hemodynamiques pendant les séances de dialyse. Cette étude visait à comparer le profil hémodynamique des certains filtres de dialyse polysulfone couramment utilisés en Suisse. Nous avons réalisé une étude ouverte, cross-over, avec 25 pazients en hémodialyse On a comparés entre eux 4 filtres de polysulfone de la surface de 1 8 m2 A (Revaclear HF, Gambro), B (Helixone HF, Fresenius), C (Xevonta HF, BBraun) et D (Helixone LF Fresenius). Le profil hémodynamique a été mesuré en utilisant une technique non invasive et au patient a été demandé de fournir une opinion sur la tolérance à la seance de dialyse. La même membrane était utilisée pour 3 séances de suites Chaque semaine la membrane de dialyse était modifiée conformément à la séquence de randomisation. Pour chaque patient on a recueillie les données de 12 séances de dialyse. L'étude a été réalisé sur trois mois à compter de novembre 2012. Les analyses ont encore une fois montré la supériorité des filtres à haut débit comparés aux filtres à faible débit, et ne tendance à la supériorité du filtre Helixone (haut debit) comparé aux deux autres membranes. Les filtres à faible débit par rapport a ceux a haut debit sont associés ä une pression systolique et diastolique plus élevées a des résistances périphériques plus hautes et à un débit cardiaque plus faible L incidence d'épisodes d'hypotension en dialyse était la suivante: Revaclear HF (A) 70 Helixone HF (B) 87 Xevonta HF 73 (C), Helixone LF (D) 75. Le nombre d'épisodes d hypotension associée au filtre B était supérieure, de manière significative. La membrane à faible flux était associée à une pression artérielle supérieure à celles des membranes de haut flux. La membrane à haut flux Helixone garantie la meilleure efficacité de dialyse. Malheureusement, la même membrane est associée à une augmentation de l'incidence des épisodes d'hypotension, probablement due à un déséquilibré hé à l'efficacité de la dialyse. Malgré ces résultats, la tolérance subjective pour les différents filtres était comparable.
Resumo:
En collectant plus de deux millions de tweets reliés au centenaire de la Grande Guerre, de nombreuses questions méthodologiques se sont posées, interrogeant par exemple la notion de corpus, les relations entre historien.ne.s et archivistes, le traitement du passé à une ère de données massives. Cette intervention se penche sur l'une de ces questions: comment fonder une recherche sur des sources primaires en flux? Comment résoudre la contradiction inhérente entre l'archive, réputée figée, et les données nées numériques qui sont émises en flux?
Resumo:
Synchronous machines with an AC converter are used mainly in large drives, for example in ship propulsion drives as well as in rolling mill drives in steel industry. These motors are used because of their high efficiency, high overload capacity and good performance in the field weakening area. Present day drives for electrically excited synchronous motors are equipped with position sensors. Most drives for electrically excited synchronous motors will be equipped with position sensors also in future. This kind of drives with good dynamics are mainly used in metal industry. Drives without a position sensor can be used e.g. in ship propulsion and in large pump and blower drives. Nowadays, these drives are equipped with a position sensor, too. The tendency is to avoid a position sensor if possible, since a sensor reduces the reliability of the drive and increases costs (latter is not very significant for large drives). A new control technique for a synchronous motor drive is a combination of the Direct Flux Linkage Control (DFLC) based on a voltage model and a supervising method (e.g. current model). This combination is called Direct Torque Control method (DTC). In the case of the position sensorless drive, the DTC can be implemented by using other supervising methods that keep the stator flux linkage origin centered. In this thesis, a method for the observation of the drift of the real stator flux linkage in the DTC drive is introduced. It is also shown how this method can be used as a supervising method that keeps the stator flux linkage origin centered in the case of the DTC. In the position sensorless case, a synchronous motor can be started up with the DTC control, when a method for the determination of the initial rotor position presented in this thesis is used. The load characteristics of such a drive are not very good at low rotational speeds. Furthermore, continuous operation at a zero speed and at a low rotational speed is not possible, which is partly due to the problems related to the flux linkage estimate. For operation in a low speed area, a stator current control method based on the DFLC modulator (DMCQ is presented. With the DMCC, it is possible to start up and operate a synchronous motor at a zero speed and at low rotational speeds in general. The DMCC is necessary in situations where high torque (e.g. nominal torque) is required at the starting moment, or if the motor runs several seconds at a zero speed or at a low speed range (up to 2 Hz). The behaviour of the described methods is shown with test results. The test results are presented for the direct flux linkage and torque controlled test drive system with a 14.5 kVA, four pole salient pole synchronous motor with a damper winding and electric excitation. The static accuracy of the drive is verified by measuring the torque in a static load operation, and the dynamics of the drive is proven in load transient tests. The performance of the drive concept presented in this work is sufficient e.g. for ship propulsion and for large pump drives. Furthermore, the developed methods are almost independent of the machine parameters.
Resumo:
Concentrated winding permanent magnet machines and their electromagnetic properties are studied in this doctoral thesis. The thesis includes a number of main tasks related to the application of permanent magnets in concentrated winding open slot machines. Suitable analytical methods are required for the first design calculations of a new machine. Concentrated winding machines differ from conventional integral slot winding machines in such a way that adapted analytical calculation methods are needed. A simple analytical model for calculating the concentrated winding axial flux machines is provided. The next three main design tasks are discussed in more detail in the thesis. The magnetic length of the rotor surface magnet machines is studied, and it is shown that the traditional methods have to be modified also in this respect. An important topic in this study has been to evaluate and minimize the rotor permanent magnet Joule losses by using segmented magnets in the calculations and experiments. Determination of the magnetizing and leakage inductances for a concentrated winding machine and the torque production capability of concentrated winding machines with different pole pair numbers are studied, and the results are compared with the corresponding properties of integral slot winding machines. The thesis introduces a new practical permanent magnet motor type for industrial use. The special features of the machine are based on the option of using concentrated winding open slot constructions of permanent magnet synchronous machines in the normal speed ranges of industrial motors, for instance up to 3000 min-1, without excessive rotor losses. By applying the analytical equations and methods introduced in the thesis, a 37 kW 2400 min-1 12-slot 10-pole axial flux machine with rotor-surfacemounted magnets is designed. The performance of the designed motor is determined by experimental measurements and finite element calculations.
Resumo:
The Switched Reluctance technology is probably best suited for industrial low-speed or zerospeed applications where the power can be small but the torque or the force in linear movement cases might be relatively high. Because of its simple structure the SR-motor is an interesting alternative for low power applications where pneumatic or hydraulic linear drives are to be avoided. This study analyses the basic parts of an LSR-motor which are the two mover poles and one stator pole and which form the “basic pole pair” in linear-movement transversal-flux switchedreluctance motors. The static properties of the basic pole pair are modelled and the basic design rules are derived. The models developed are validated with experiments. A one-sided one-polepair transversal-flux switched-reluctance-linear-motor prototype is demonstrated and its static properties are measured. The modelling of the static properties is performed with FEM-calculations. Two-dimensional models are accurate enough to model the static key features for the basic dimensioning of LSRmotors. Three-dimensional models must be used in order to get the most accurate calculation results of the static traction force production. The developed dimensioning and modelling methods, which could be systematically validated by laboratory measurements, are the most significant contributions of this thesis.
Resumo:
The recent digitization, fragmentation of the media landscape and consumers’ changing media behavior are all changes that have had drastic effects on creating marketing communications. In order to create effective marketing communications large advertisers are now co-operating with a variety of marketing communications companies. The purpose of the study is to understand how advertisers perceive these different companies and more importantly how do advertisers expect their roles to change in the future as the media landscape continues to evolve. Especially the changing roles of advertising agencies and media agencies are examined as they are at the moment the most relevant partners of the advertisers. However, the research is conducted from a network perspective rather than focusing on single actors of the marketing communications industry network. The research was conducted using a qualitative theme interview method. The empirical data was gathered by interviewing representatives from nine of the 50 largest Finnish advertisers measured by media spending. Thus, the research was conducted solely from large B2C advertisers’ perspective while the views of their other relevant actors of the network were left unexplored. The interviewees were chosen with a focus on variety of points of view. The analytical framework that was used to analyze the gathered data was built the IMP group’s industrial network model that consists of actors, their resources and activities. As technology driven media landscape fragmentation and consumers’ changing media behavior continue to increase the complexity of creating marketing communications, advertisers are going to need to rely on a growing number of partnerships as they see that the current actors of the network will not be able to widen their expertise to answer to these new needs. The advertisers expect to form new partnerships with actors that are more specialized and able to react and produce activities more quickly than at the moment. Thus, new smaller and more agile actors with looser structures are going to appear to fill these new needs. Therefore, the need of co-operation between the actors is going to become more important. These changes pose the biggest threat for traditional advertising agencies as they were seen as being most unable to cope with the ongoing change. Media agencies are in a more favorable position for remaining relevant for the advertisers as they will be able to justify their activities and provided value by leveraging their data handling abilities. In general the advertisers expect to be working with a limited number of close actors and in addition having a network of smaller actors, which are used on a more ad hoc basis.
Resumo:
Measurement is a tool for researching. Therefore, it is important that the measuring process is carried out correctly, without distorting the signal or the measured event. Researches of thermoelectric phenomena have been focused more on transverse thermoelectric phenomena during recent decades. Transverse Seebeck effect enables to produce thinner and faster heat flux sensor than before. Studies about transverse Seebeck effect have so far focused on materials, so in this Master’s Thesis instrumentation of transverse Seebeck effect based heat flux sensor is studied, This Master’s Thesis examines an equivalent circuit of transverse Seebeck effect heat flux sensors, their connectivity to electronics and choosing and design a right type amplifier. The research is carried out with a case study which is Gradient Heat Flux Sensors and an electrical motor. In this work, a general equivalent circuit was presented for the transverse Seebeck effect-based heat flux sensor. An amplifier was designed for the sensor of the case study, and the solution was produced for the measurement of the local heat flux of the electric motor to improve the electromagnetic compatibility.
Resumo:
This master’s thesis is devoted to study different heat flux measurement techniques such as differential temperature sensors, semi-infinite surface temperature methods, calorimetric sensors and gradient heat flux sensors. The possibility to use Gradient Heat Flux Sensors (GHFS) to measure heat flux in the combustion chamber of compression ignited reciprocating internal combustion engines was considered in more detail. A. Mityakov conducted an experiment, where Gradient Heat Flux Sensor was placed in four stroke diesel engine Indenor XL4D to measure heat flux in the combustion chamber. The results which were obtained from the experiment were compared with model’s numerical output. This model (a one – dimensional single zone model) was implemented with help of MathCAD and the result of this implementation is graph of heat flux in combustion chamber in relation to the crank angle. The values of heat flux throughout the cycle obtained with aid of heat flux sensor and theoretically were sufficiently similar, but not identical. Such deviation is rather common for this type of experiment.
Resumo:
In nuclear reactors, the occurrence of critical heat flux leads to fuel rod overheating with clad fusion and radioactive products leakage. To predict the effects of such phenomenon, experiments are performed using electrically heated rods to simulate operational and accidental conditions of nuclear fuel rods. In the present work, it is performed a theoretical analysis of the drying and rewetting front propagation during a critical heat flux experiment, starting with the application of an electrical power step from steady state condition. After the occurrence of critical heat flux, the drying front propagation is predicted. After a few seconds, a power cut is considered and the rewetting front behavior is analytically observed. Studies performed with various values of coolant mass flow rate show that this variable has more influence on the drying front velocity than on the rewetting one.
Resumo:
The application of flux cored arc welding (FCAW) has increased in manufacturing and fabrication. Even though FCAW is well known for its good capability in producing quality welds, few reports have been published on the cause of the relatively high diffusible hydrogen content in the weld metal and its relation with the ingredients used in the wire production and with the welding parameters (mainly welding current). This paper describes experiments where data obtained from weld metal diffusible hydrogen analysis, metal droplet collection, and high-speed recording of metal droplet transfer were used to evaluate the effect of welding current on diffusible hydrogen content in the weld metal. The results from gas chromatography analysis showed that weld metal hydrogen content indeed increased with welding current. A polynomial regressional analysis concluded that hydrogen increase with current was better described by a linear function with proportional constant of approximately 0.7 or 70%. Different from the GMA welding transfer behavior, statistical analysis showed only a small increase in metal droplet size with increasing current. The metal transfer mode remained in the globular range for currents between 100 and 150 A. The most surprising findings were with the high-speed cinematography recording. Observing the high speed movies, it was possible to see that at low current, "unmelted" flux sporadically touched the weld pool but at higher current, the flux remained touching the weld pool during the whole time of droplet formation and transfer. It is believed that since the flux has ingredients that contain hydrogen, hydrogen passes through the arc undisturbed, going to the weld bead intact and increasing the hydrogen content in the weld metal. Another important observation is regarding to droplet size. Droplet size increased with increasing current because forces from decomposed gases from the flux could sustain the droplets, retarding their transfer and allowing them to grow.
Resumo:
This thesis is part of the Arctic Materials Technologies Development –project. The research of the thesis was done in cooperation with Arctech Helsinki Shipyard, Lappeenranta University of Technology and Kemppi Oy. Focus of the thesis was to study narrow gap flux-cored arc welding of two high strength steels with three different groove angles of 20°, 10° and 5°. Welding of the 25 mm thick E500 TMCP and 10 mm thick EH36 steels was mechanized and Kemppi WisePenetration and WiseFusion processes were tested with E500 TMCP steel. EH36 steel test pieces were welded without Wise processes. Shielding gases chosen were carbon dioxide and a mixture of argon and carbon dioxide. Welds were tested with non-destructive and destructive testing methods. Radiographic, visual, magnetic particle and liquid penetrant testing proved that welds were free from imperfections. After non-destructive testing, welds were tested with various destructive testing methods. Impact strength, bending, tensile strength and hardess tests proved that mechanized welding and Wise processes produced quality welds with narrower gap. More inconsistent results were achieved with test pieces welded without Wise processes. Impact test results of E500 TMCP exceeded the 50 J limit on weld, set by Russian Maritime Register of Shipping. EH36 impact test results were much closer to the limiting values of 34 J on weld and 47 on HAZ. Hardness values of all test specimens were below the limiting values. Bend testing and tensile testing results fulfilled the the Register requirements. No cracking or failing occurred on bend test specimens and tensile test results exceeded the Register limits of 610 MPa for E500 TMCP and 490 MPa for EH36.
Resumo:
We investigated the prognostic effects of high-flux hemodialysis (HFHD) and low-flux hemodialysis (LFHD) in patients with chronic kidney disease (CKD). Both an electronic and a manual search were performed based on our rigorous inclusion and exclusion criteria to retrieve high-quality, relevant clinical studies from various scientific literature databases. Comprehensive meta-analysis 2.0 (CMA 2.0) was used for the quantitative analysis. We initially retrieved 227 studies from the database search. Following a multi-step screening process, eight high-quality studies were selected for our meta-analysis. These eight studies included 4967 patients with CKD (2416 patients in the HFHD group, 2551 patients in the LFHD group). The results of our meta-analysis showed that the all-cause death rate in the HFHD group was significantly lower than that in the LFHD group (OR=0.704, 95%CI=0.533-0.929, P=0.013). Additionally, the cardiovascular death rate in the HFHD group was significantly lower than that in the LFHD group (OR=0.731, 95%CI=0.616-0.866, P<0.001). The results of this meta-analysis clearly showed that HFHD decreases all-cause death and cardiovascular death rates in patients with CKD and that HFHD can therefore be implemented as one of the first therapy choices for CKD.
Resumo:
Axial-flux machines tend to have cooling difficulties since it is difficult to arrange continuous heat path between the stator stack and the frame. One important reason for this is that no shrink fitting of the stator is possible in an axial-flux machine. Using of liquid-cooled end shields does not alone solve this issue. Cooling of the rotor and the end windings may also be difficult at least in case of two-stator-single-rotor construction where air circulation in the rotor and in the end-winding areas may be difficult to arrange. If the rotor has significant losses air circulation via the rotor and behind the stator yokes should be arranged which, again, weakens the stator cooling. In this paper we study a novel way of using copper bars as extra heat transfer paths between the stator teeth and liquid cooling pools in the end shields. After this the end windings still suffer of low thermal conductivity and means for improving this by high-heat-conductance material was also studied. The design principle of each cooling system is presented in details. Thermal models based on Computational Fluid Dynamics (CFD) are used to analyse the temperature distribution in the machine. Measurement results are provided from different versions of the machine. The results show that significant improvements in the cooling can be gained by these steps.