959 resultados para metadata repository
Resumo:
Many projects, e.g. VIKEF [13] and KIM [7], present grounded approaches for the use of entities as a means of indexing and retrieval of multimedia resources from heterogeneous sources. In this paper, we discuss the state-of-the-art of entity-centric approaches for multimedia indexing and retrieval. A summary of projects employing entity-centric repositories are portrayed. This paper also looks at the current state-of-the-art authoring environment, Macromedia Authorware, and the possibility of potential extension of this environment for entity-based multimedia authoring.
Resumo:
A self study course for learning to program using the C programming language has been developed. A Learning Object approach was used in the design of the course. One of the benefits of the Learning Object approach is that the learning material can be reused for different purposes. 'Me course developed is designed so that learners can choose the pedagogical approach most suited to their personal learning requirements. For all learning approaches a set of common Assessment Learning Objects (ALOs or tests) have been created. The design of formative assessments with ALOs can be carried out by the Instructional Designer grouping ALOs to correspond to a specific assessment intention. The course is non-credit earning, so there is no summative assessment, all assessment is formative. In this paper examples of ALOs and their uses is presented together with their uses as decided by the Instructional Designer and learner. Personalisation of the formative assessment of skills can be decided by the Instructional Designer or the learner using a repository of pre-designed ALOs. The process of combining ALOs can be carried out manually or in a semi-automated way using metadata that describes the ALO and the skill it is designed to assess.
Resumo:
Climate modeling is a complex process, requiring accurate and complete metadata in order to identify, assess and use climate data stored in digital repositories. The preservation of such data is increasingly important given the development of ever-increasingly complex models to predict the effects of global climate change. The EU METAFOR project has developed a Common Information Model (CIM) to describe climate data and the models and modelling environments that produce this data. There is a wide degree of variability between different climate models and modelling groups. To accommodate this, the CIM has been designed to be highly generic and flexible, with extensibility built in. METAFOR describes the climate modelling process simply as "an activity undertaken using software on computers to produce data." This process has been described as separate UML packages (and, ultimately, XML schemas). This fairly generic structure canbe paired with more specific "controlled vocabularies" in order to restrict the range of valid CIM instances. The CIM will aid digital preservation of climate models as it will provide an accepted standard structure for the model metadata. Tools to write and manage CIM instances, and to allow convenient and powerful searches of CIM databases,. Are also under development. Community buy-in of the CIM has been achieved through a continual process of consultation with the climate modelling community, and through the METAFOR team’s development of a questionnaire that will be used to collect the metadata for the Intergovernmental Panel on Climate Change’s (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs.
Resumo:
With the growing number and significance of urban meteorological networks (UMNs) across the world, it is becoming critical to establish a standard metadata protocol. Indeed, a review of existing UMNs indicate large variations in the quality, quantity, and availability of metadata containing technical information (i.e., equipment, communication methods) and network practices (i.e., quality assurance/quality control and data management procedures). Without such metadata, the utility of UMNs is greatly compromised. There is a need to bring together the currently disparate sets of guidelines to ensure informed and well-documented future deployments. This should significantly improve the quality, and therefore the applicability, of the high-resolution data available from such networks. Here, the first metadata protocol for UMNs is proposed, drawing on current recommendations for urban climate stations and identified best practice in existing networks
Resumo:
We describe the CHARMe project, which aims to link climate datasets with publications, user feedback and other items of "commentary metadata". The system will help users learn from previous community experience and select datasets that best suit their needs, as well as providing direct traceability between conclusions and the data that supported them. The project applies the principles of Linked Data and adopts the Open Annotation standard to record and publish commentary information. CHARMe contributes to the emerging landscape of "climate services", which will provide climate data and information to influence policy and decision-making. Although the project focuses on climate science, the technologies and concepts are very general and could be applied to other fields.
Resumo:
Service discovery in large scale, open distributed systems is difficult because of the need to filter out services suitable to the task at hand from a potentially huge pool of possibilities. Semantic descriptions have been advocated as the key to expressive service discovery, but the most commonly used service descriptions and registry protocols do not support such descriptions in a general manner. In this paper, we present a protocol, its implementation and an API for registering semantic service descriptions and other task/user-specific metadata, and for discovering services according to these. Our approach is based on a mechanism for attaching structured and unstructured metadata, which we show to be applicable to multiple registry technologies. The result is an extremely flexible service registry that can be the basis of a sophisticated semantically-enhanced service discovery engine, an essential component of a Semantic Grid.