986 resultados para mesoporous carbon


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomass is the world’s most important renewable carbon source, whose major component, carbohydrates, can be valorized by transformation into biofuels and high value-added chemicals. Among the latter, 5-hydroxymethylfurfural (HMF), obtained by C6 carbohydrates dehydration, is a versatile and key intermediate for the production of a large spectrum of biobased chemicals. Different catalytic systems have been evaluated for HMF production, mostly based on heterogeneous catalysis as alternative to the use of conventional mineral acids [1]. Moreover, niobium oxide has shown interesting properties as acid catalyst for dehydration of sugars [2-3]. On the other hand, the high surface area and large pore size of mesoporous solids make them suitable for many catalytic processes. In the present work, the dehydration of glucose to HMF has been evaluated by using different mesoporous mixed Nb2O5-ZrO2 in a biphasic water–Methyl Isobutyl Ketone (MIBK) solvent system to avoid the HMF degradation. Different experimental parameters, such as reaction temperature and time, as well as the addition of CaCl2 have been studied in order to maximize the HMF yield.N2 adsorption-desorption isotherms have corroborated the mesostructured character of catalysts, being all isotherms of Type IV according to the IUPAC classification. BET surface area decreases for catalysts with higher Zr content (Table 1). Likewise, pore volume and average pore diameter values diminish after Zr incorporation. Concerning the acid properties, a clear correlation between Nb and acidity can be observed, in such a way that total acidity, as deduced from NH3-TPD, decreases when the Zr content rises, and consequently the amount of Nb is reduced.These mesoporous Nb-Zr catalysts have been tested in the dehydration of glucose to HMF at 175 ºC under batch operation in aqueous solution, using MIBK as co-solvent. It can be observed that both glucose conversion and HMF yield increase with the Nb content, being maximum (90% and 36%, respectively) after 90 minutes for Nb2O5. This trend changes when CaCl2 is added to the reaction medium, improving the catalytic performance of mixed oxides and ZrO2, but Nb2O5 maintains similar results than without salt addition. This could be justified by the interaction between CaCl2 and Lewis acid sites, since zirconium oxide possesses a higher amount of this acid sites type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A purified commercial double-walled carbon nanotube (DWCNT) sample was investigated by transmission electron microscopy (TEM), thermogravimetry (TG), and Raman spectroscopy. Moreover, the heat capacity of the DWCNT sample was determined by temperature-modulated differential scanning calorimetry in the range of temperature between -50 and 290 °C. The main thermo-oxidation characterized by TG occurred at 474 °C with the loss of 90 wt% of the sample. Thermo-oxidation of the sample was also investigated by high-resolution TG, which indicated that a fraction rich in carbon nanotube represents more than 80 wt% of the material. Other carbonaceous fractions rich in amorphous coating and graphitic particles were identified by the deconvolution procedure applied to the derivative of TG curve. Complementary structural data were provided by TEM and Raman studies. The information obtained allows the optimization of composites based on this nanomaterial with reliable characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inclusions of sp-hybridised, trans-polyacetylene [trans-(CH)x] and poly(p-phenylene vinylene) (PPV) chains are revealed using resonant Raman scattering (RRS) investigation of amorphous hydrogenated carbon (a-C:H) films in the near IR – UV range. The RRS spectra of trans-(CH)x core Ag modes and the PPV CC-H phenylene mode are found to transform and disperse as the laser excitation energy ћωL is increased from near IR through visible to UV, whereas sp-bonded inclusions only become evident in UV. This is attributed to ћωL probing of trans-(CH)x chain inhomogeneity and the distribution of chains with varying conjugation length; for PPV to the resonant probing of phelynene ring disorder; and for sp segments, to ћωL probing of a local band gap of end-terminated polyynes. The IR spectra analysis confirmed the presence of sp, trans-(CH)x and PPV inclusions. The obtained RRS results for a-C:H denote differentiation between the core Ag trans-(CH)x modes and the PPV phenylene mode. Furthermore, it was found that at various laser excitation energies the changes in Raman spectra features for trans-(CH)x segments included in an amorphous carbon matrix are the same as in bulk trans-polyacetylene. The latter finding can be used to facilitate identification of trans-(CH)x in the spectra of complex carbonaceous materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixtures of Regioregular Poly(3-hexyl-thiophene) (rrP3HT) and multi wall carbon nanotubes have been investigated by Scanning Tunneling Microscopy in Ultra High Vacuum. Carbon nanotubes covered by rrP3HT have been imaged and analyzed, providing a clear evidence that this polymer self assembles on the nanotube surface following geometrical constraints and adapting its equilibrium chain-to-chain distance. Largely spaced covered nanotubes have been analyzed to investigate the role played by nanotube chirality in the polymer wrapping, evidencing strong rrP3HT interactions along well defined directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution thermogravimetry has been used to evaluate the carbonaceous content in a commercial sample of single-walled carbon nanotube (SWNT). The content of SWNTs in the sample was found to be at least 77mass% which was supported by images obtained with scanning and transmission electron microscopies (SEM and TEM). Furthermore, the influence of SWNT addition on the thermal stability of graphite in mixtures of SWNT/graphite at different proportions was investigated. The graphite stability decreased with the increased of SWNT content in the overall range of composition. This behavior could be due to the close contact between these carbonaceous species as determined by SEM analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the rising levels of CO2 in the atmosphere, low-emission technologies with carbon dioxide capture and storage (CCS) provide one option for transforming the global energy infrastructure into a more environmentally, climate sustainable system. However, like many technology innovations, there is a social risk to the acceptance of CCS. This article presents the findings of an engagement process using facilitated workshops conducted in two communities in rural Queensland, Australia, where a demonstration project for IGCC with CCS has been announced. The findings demonstrate that workshop participants were concerned about climate change and wanted leadership from government and industry to address the issue. After the workshops, participants reported increased knowledge and more positive attitudes towards CCS, expressing support for the demonstration project to continue in their local area. The process developed is one that could be utilized around the world to successfully engage communities on the low carbon emission technology options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning Tunneling Spectroscopy was performed on a (15,0) single wall carbon nanotube partially wrapped by Poly(3-hexyl-thiophene). On the bare nanotube section, the local density of states is in good agreement with the theoretical model based on local density approximation and remarkably is not perturbed by the polymer wrapping. On the coiled section, a rectifying current-voltage characteristic has been observed along with the charge transfer from the polymer to the nanotube. The electron transfer from Poly(3-hexyl-thiophene) to metallic nanotube was previously theoretically proposed and contributes to the presence of the Schottky barrier at the interface responsible for the rectifying behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to develop an effective numerical simulation technique for the dynamic deflection analysis of nanotubes-based nanoswitches. The nanoswitch is simplified to a continuum structure, and some key material parameters are extracted from typical molecular dynamics (MD). An advanced local meshless formulation is applied to obtain the discretized dynamic equations for the numerical solution. The developed numerical technique is firstly validated by the static deflection analyses of nanoswitches, and then, the fundamental dynamic properties of nanoswitches are analyzed. A parametric comparison with the results in the literature and from experiments shows that the developed modelling approach is accurate, efficient and effective.