973 resultados para melt extrusion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melt-mixed high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites with 1–10 wt% MWCNTs were prepared by twin screw extrusion and compression moulded into sheet form. The compression moulded nanocomposites exhibit a 112% increase in modulus at a MWCNT loading of 4 wt%, and a low electrical percolation threshold of 1.9 wt%. Subsequently, uniaxial, sequential (seq-) biaxial and simultaneous (sim-) biaxial stretching of the virgin HDPE and nanocomposite sheets was conducted at different strain rates and stretching temperatures to investigate the processability of HDPE with the addition of nanotubes and the influence of deformation on the structure and final properties of nanocomposites. The results show that the processability of HDPE is improved under all the uniaxial and biaxial deformation conditions due to a strengthened strain hardening behaviour with the addition of MWCNTs. Extensional deformation is observed to disentangle nanotube agglomerates and the disentanglement degree is shown to depend on the stretching mode, strain rate and stretching temperatures applied. The disentanglement effectiveness is: uniaxial stretching < sim-biaxial stretching < seq-biaxial stretching, under the same deformation parameters. In sim-biaxial stretching, reducing the strain rate and stretching temperature can lead to more nanotube agglomerate breakup. Enhanced nanotube agglomerate disentanglement exhibits a positive effect on the mechanical properties and a negative effect on the electrical properties of the deformed nanocomposites. The ultimate stress of the composite containing 4 wt% MWCNTs increased by ∼492% after seq-biaxial stretching, while the resistivity increased by ∼1012 Ω cm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200–300 s−1) and injection moulding (approximately 900 s−1). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in identifying processing conditions, polymer miscibility and plasticisation phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodegradable polymers, such as PLA (Polylactide), come from renewable resources like corn starch and if disposed of correctly, degrade and become harmless to the ecosystem making them attractive alternatives to petroleum based polymers. PLA in particular is used in a variety of applications including medical devices, food packaging and waste disposal packaging. However, the industry faces challenges in melt processing of PLA due to its poor thermal stability which is influenced by processing temperatures and shearing.
Identification and control of suitable processing conditions is extremely challenging, usually relying on trial and error, and often sensitive to batch to batch variations. Off-line assessment in a lab environment can result in high scrap rates, long lead times and lengthy and expensive process development. Scrap rates are typically in the region of 25-30% for medical grade PLA costing between €2000-€5000/kg.
Additives are used to enhance material properties such as mechanical properties and may also have a therapeutic role in the case of bioresorbable medical devices, for example the release of calcium from orthopaedic implants such as fixation screws promotes healing. Additives can also reduce the costs involved as less of the polymer resin is required.
This study investigates the scope for monitoring, modelling and optimising processing conditions for twin screw extrusion of PLA and PLA w/calcium carbonate to achieve desired material properties. A DAQ system has been constructed to gather data from a bespoke measurement die comprising melt temperature; pressure drop along the length of the die; and UV-Vis spectral data which is shown to correlate to filler dispersion. Trials were carried out under a range of processing conditions using a Design of Experiments approach and samples were tested for mechanical properties, degradation rate and the release rate of calcium. Relationships between recorded process data and material characterisation results are explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shape stabilised phase change materials (SSPCMs) based on a high density poly(ethylene)(hv-HDPE) with high (H-PW, Tm = 56–58 °C) and low (L-PW, Tm = 18–23 °C) melting point paraffin waxes were readily prepared using twin-screw extrusion. The thermo-physical properties of these materials were assessed using a combination of techniques and their suitability for latent heat thermal energy storage (LHTES) assessed. The melt processing temperature (160 °C) of the HDPE used was well below the onset of thermal decomposition of H-PW (220 °C), but above that for L-PW (130 °C), although the decomposition process extended over a range of 120 °C and the residence time of L-PW in the extruder was <30 s. The SSPCMs prepared had latent heats up to 89 J/g and the enthalpy values for H-PW in the respective blends decreased with increasing H-PW loading, as a consequence of co-crystallisation of H-PW and hv-HDPE. Static and dynamic mechanical analysis confirmed both waxes have a plasticisation effect on this HDPE. Irrespective of the mode of deformation (tension, flexural, compression) modulus and stress decreased with increased wax loading in the blend, but the H-PW blends were mechanically superior to those with L-PW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites of Linear Low Density Polyethylene (LLDPE) and Graphene Nanoplatelets (GNPs) were processed using a twin screw extruder under different extrusion conditions. The effects of screw speed, feeder speed and GNP content on the electrical, thermal and mechanical properties of composites were investigated. The inclusion of GNPs in the matrix improved the thermal stability and conductivity by 2.7% and 43%, respectively. The electrical conductivity improved from 10−11 to 10−5 S/m at 150 rpm due to the high thermal stability of the GNPs and the formation of phonon and charge carrier networks in the polymer matrix. Higher extruder speeds result in a better distribution of the GNPs in the matrix and a significant increase in thermal stability and thermal conductivity. However, this effect is not significant for the electrical conductivity and tensile strength. The addition of GNPs increased the viscosity of the polymer, which will lead to higher processing power requirements. Increasing the extruder speed led to a reduction in viscosity, which is due to thermal degradation and/or chain scission. Thus, while high speeds result in better dispersions, the speed needs to be optimized to prevent detrimental impacts on the properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of the study was to optimise the reactive extrusion conditions in the conventional modification processes of polyethylenes in a single screw extruder.The optimum conditions for peroxide crosslinking of low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and their blend were determined in a torque rheometer. The actual reactive extrusion was performed in a laboratory single screw extruder using the optimum parameters. The influence of the coagent, triaUyl cyanurate (TAC), on the cross linking of low density polyethylene in the presence of peroxide was also investigated. The peroxide crosslinking was found to improve the mechanical properties and the thermal stability of the polyethylenes. The efficiency of crosslinking was found to be improved by the addition of coagent such as TAC.The optimum conditions for silane grafting viz temperature, shear rate, silane and DCP concentrations were determined on a torque rheometer in the case of LDPE, LLDPE and their blend. Silane grafting of LDPE in the presence of peroxide was performed with and without addition of water. Compounding of such mixtures in the melt at high temperatures caused decomposition of the peroxide and grafting of alkoxy silyl groups to the polyethylene chains.The optimum parameters for maleic anhydride modification of LDPE, LLDPE and their blend were determined. The grafting reaction was confinned by FTIR spectroscopy. Modification of polyethylenes with maleic anhydride in the presence of dicumyl peroxide was found to be useful in improving mechanical properties. The improvement was found to be mainly due to the grafting of carboxyl group and formation of crosslinks between the chains. The cross linking initiated improvements indicate extended property profiles and new application fields for polyethylenes.On the whole the study shows that the optimum conditions for modifying polyethylenes can be determined on a torque rheometer and actual modification can be performed in a single screw extruder by employing the optimum parameters for improved mechanical! thermal behaviour without seriously affecting their processing behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel polyamide nanocomposite fibres have been produced by compounding semi aromatic Poly (m-xylene adipamide) (MXD6) and organophilic Montmorillonite (MMT). Partially orientated fibres (POF) of MXD6 nanocomposite were obtained by melt spinning on a multifilament fibre extrusion system at three different speeds. The effect of the drawing velocity
on the mechanical properties of the filaments has been determined. Tensile measurements indicated that the introduction of the nanoparticies by melt intercalation improves the tenacity and toughness of the resulting polyamide fibres. The microstructure of the nanocomposites was examined by X-ray diffraction and Transmission Electron Microscope (TEM) and shown to
be an exfoliated disordered structure. The thermal stability of MXD6 nanocomposites was analysed by thermo gravimetric analysis (TGA) suggesting stabilisation of the clay and the polymer systems above 450°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallocene catalyzed linear low density polyethylene (m-LLDPE) is a new generation of olefin copolymer. Based on the more recently developed metallocene-type catalysts, m-LLDPE can be synthesized with exactly controlled short chain branches and stereo-regular microstructure. The unique properties of these polymers have led to their applications in many areas. As a result, it is important to have a good understanding of the oxidation mechanism of m-LLDPE during melt processing in order to develop more effective stabilisation systems and continue to increase the performance of the material. The primary objectives of this work were, firstly, to investigate the oxidative degradation mechanisms of m-LLDPE polymers having different comonomer (I-octene) content during melt processing. Secondly, to examine the effectiveness of some commercial antioxidants on the stabilisation of m-LLDPE melt. A Ziegler-polymerized LLDPE (z-LLDPE) based on the same comonomer was chosen and processed under the same conditions for comparison with the metallocene polymers. The LLDPE polymers were processed using an internal mixer (torque rheometer, TR) and a co-rotating twin-screw extruder (TSE). The effects of processing variables (time, temperature) on the rheological (MI, MWD, rheometry) and molecular (unsaturation type and content, carbonyl compounds, chain branching) characteristics of the processed polymers were examined. It was found that the catalyst type (metallocene or Ziegler) and comonomer content of the polymers have great impact on their oxidative degradation behavior (crosslinking or chain scission) during melt processing. The metallocene polymers mainly underwent chain scission at lower temperature (<220°C) but crosslinking became predominant at higher temperature for both TR and TSE processed polymers. Generally, the more comonomers the m-LLDPE contains, a larger extent of chain scission can be expected. In contrast, crosslinking reactions were shown to be always dominant in the case of the Ziegler LLDPE. Furthermore, it is clear that the molecular weight distribution (MWD) of all LLDPE became broader after processing and tended generally to be broader at elevated temperatures and more extrusion passes. So, it can be concluded that crosslinking and chain scission are temperature dependent and occur simultaneously as competing reactions during melt processing. Vinyl is considered to be the most important unsaturated group leading to polymer crosslinking as its concentration in all the LLDPE decreased after processing. Carbonyl compounds were produced during LLDPE melt processing and ketones were shown to be the most imp0l1ant carbonyl-containing products in all processed polymers. The carbonyl concentration generally increased with temperature and extrusion passes, and the higher carbonyl content fonned in processed z-LLDPE and m-LLDPE polymers having higher comonomer content indicates their higher susceptibility of oxidative degradation. Hindered phenol and lactone antioxidants were shown to be effective in the stabilization of m-LLDPE melt when they were singly used in TSE extrusion. The combination of hindered phenol and phosphite has synergistic effect on m-LLDPE stabilization and the phenol-phosphite-Iactone mixture imparted the polymers with good stability during extrusion, especially for m-LLDPE with higher comonomer content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two main objectives of the research work conducted were firstly, to investigate the processing and rheological characteristics of a new generation metallocene catalysed linear low density polyethylene (m-LLDPE), in order to establish the thermal oxidative degradation mechanism, and secondly, to examine the role of selected commercial stabilisers on the melt stability of the polymers. The unstabilised m-LLDPE polymer was extruded (pass I) using a twin screw extruder, at different temperatures (210-285°C) and screw speeds (50-20rpm) and was subjected to multiple extrusions (passes, 2-5) carried out under the same processing conditions used in the first pass. A traditional Ziegler/Natta catalysed linear low density polyethylene (z-LLDPE) produced by the same manufacturer was also subjected to a similar processing regime in order to compare the processability and the oxidative degradation mechanism (s) of the new m-LLDPE with that of the more traditional z-LLDPE. The effect of some of the main extrusion characteristics of the polymers (m-LLDPE and z-LLDPE) on their melt rheological behaviour was investigated by examining their melt flow performance monitored at two fixed low shear rate values, and their rheological behaviour investigated over the entire shear rates experienced during extrusion using a twin-bore capillary rheometer. Capillary rheometric measurements, which determine the viscous and elastic properties of polymers, have shown that both polymers are shear thinning but the m-LLDPE has a higher viscosity than z-LLDPE and the extent of reduction in viscosity of the former when the extrusion temperature was increased from 210°C to 285°C was much higher than in the case of the z-LLDPE polymer. This was supplied by the findings that the m-LLDPE polymer required higher power consumption under all extrusion conditions examined. It was fUliher revealed that the m-LLDPE undergoes a higher extent of melt fracture, the onset of which occurs under much lower shear rates than the Ziegler-based polymer and this was attributed to its higher shear viscosity and narrower molecular weight distribution (MWD). Melt flow measurements and GPC have shown that after the first extrusion pass, the initial narrower MWD of m-LLDPE is retained (compared to z-LLDPE), but upon further multiple extrusion passes it undergoes much faster broadening of its MWD which shifts to higher Mw polymer fractions, paliicularly at the high screw speeds. The MWD of z-LLDPE polymer on the other hand shifts towards the lower Mw end. All the evidence suggest therefore the m-LLDPE undergoes predominantly cross-linking reactions under all processing conditions whereas z-LLDPE undergoes both cross-linking and chain scission reactions with the latter occurring predominantly under more severe processing conditions (higher temperatures and screw speeds, 285°CI200rpm). The stabilisation of both polymers with synergistic combinations of a hindered phenol (Irganox 1076) and a phosphite (Weston 399) at low concentrations has shown a high extent of melt stabilisation in both polymers (extrusion temperatures 210-285°C and screw speeds 50-200rpm). The best Irganox 1076/Weston 399 system was found to be at an optimum 1:4 w/w ratio, respectively and was found to be most effective in the z-LLDPE polymer. The melt stabilising effectiveness of a Vitamin E/Ultranox 626 system used at a fraction of the total concentration of Irganox 1076/Weston 399 system was found to be higher in both polymers (under all extrusion conditions). It was found that AOs which operate primarily as alkyl (Re) radical scavengers are the most effective in inhibiting the thermal oxidative degradation of m-LLDPE in the melt; this polymer was shown to degrade in the melt primarily via alky radicals resulting in crosslinking. Metallocene polymers stabilised with single antioxidants of Irganox HP 136 (a lactone) and Irganox E201 (vitamin E) produced the highest extent of melt stability and the least discolouration during processing (260°C/1 OOrpm). Furthermore, synergistic combinations of Irganox HP I 36/Ultranox 626 (XP-60) system produced very high levels of melt and colour stability (comparable to the Vitamin E based systems) in the mLLDPE polymer. The addition of Irganox 1076 to an Irganox HP 136/Ultranox 626 system was found not to result in increasing melt stability but gave rise to increasing discolouration of the m-LLDPE polymer. The blending of a hydroxylamine (lrgastab FS042) with a lactone and Vitamin E (in combination with a phosphite) did not increase melt stability but induced severe discolouration of resultant polymer samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallocene ethylene-1-octene copolymers having different densities and comonomer content ranging from 11 to 36 wt% (m-LLDPE), and a Ziegler copolymer (z-LLDPE) containing the same level of short-chain branching (SCB) corresponding to one of the m-LLDPE polymers, were subjected to extrusion. The effects of temperature (210-285 °C) and multi-pass extrusions (up to five passes) on the rheological and structural characteristics of these polymers were investigated using melt index and capillary rheometry, along with spectroscopic characterisation of the evolution of various products by FTIR, C-NMR and colour measurements. The aim is to develop a better understanding of the effects of processing variables on the structure and thermal degradation of these polymers. Results from rheology show that both extrusion temperature and the amount of comonomer have a significant influence on the polymer melt thermo-oxidative behaviour. At low to intermediate processing temperatures, all m-LLDPE polymers exhibited similar behaviour with crosslinking reactions dominating their thermal oxidation. By contrast, at higher processing temperatures, the behaviour of the metallocene polymers changed depending on the level of comonomer content: higher SCB gave rise to predominantly chain scission reactions whereas polymers with lower level of SCB continued to be dominated by crosslinking. This temperature dependence was attributed to changes in the different evolution of carbonyl and unsaturated compounds including vinyl, vinylidene and trans-vinylene. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twin-screw extrusion is used to compound fillers into a polymer matrix in order to improve the properties of the final product. The resultant properties of the composite are determined by the operating conditions used during extrusion processing. Changes in the operating conditions affect the physics of the melt flow, inducing unique composite properties. In the following work, the Residence Stress Distribution methodology has been applied to model both the stress behavior and the property response of a twin-screw compounding process as a function of the operating conditions. The compounding of a pigment into a polymer melt has been investigated to determine the effect of stress on the degree of mixing, which will affect the properties of the composite. In addition, the pharmaceutical properties resulting from the compounding of an active pharmaceutical ingredient are modeled as a function of the operating conditions, indicating the physical behavior inducing the property responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrate that an amphiphilic block copolymer such as polyethylene glycol-b-polyethylene can be used as both dispersing and interfacial compatibilizing agent for the melt compounding of LLDPE with cellulose nano-fibers. A simple and effective spray drying methodology was first used for the first time for the preparation of a powdered cellulose nano-fibers extrusion feedstock. Surface adsorption of the amphiphilic PEG-b-PE was carried out directly in solution during this process. These various dry cellulosic feedstock were subsequently combined with LLDPE via extrusion to produce a range of nano-composites. The collective outcomes of this research are several folds. Firstly we show that presence of surface adsorbed PEG-b-PE effectively hindered the aggregation of the cellulose nano-fibers during the extrusion, affording clear homogenous materials with minimum aggregation even at the highest loading of cellulose nano-fibers (∼23 vol.%). Secondly, the tailored LLDPE/cellulose interface arising from intra- and inter-molecular hydrogen and Van der Waals bonds yielded significant levels of mechanical improvements in terms of storage and tensile modulus. We believe this study provides a simple technological template to produce high quality and performant polyolefins cellulose-based nano-composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications. In the study reported, we melt-electrospun blends of poly(ε-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block-PCL). A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated. Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 µm) compared to pure PCL. The PCL fibres obtained had average diameters ranging from 6 to 33 µm and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased. This approach shows that PCL and blends of PEG-block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes. Copyright © 2010 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt electrospinning is relatively under-investigated compared to solution electrospinning but provides opportunities in numerous areas, in which solvent accumulation or toxicity are a concern. These applications are diverse, and provide a broad set of challenges to researchers involved in electrospinning. In this context, melt electrospinning provides an alternative approach that bypasses some challenges to solution electronspinning, while bringing new issues to the forefront, such as the thermal stability of polymers. This Focus Review describes the literature on melt electrospinning, as well as highlighting areas where both melt and solution are combined, and potentially merge together in the future.