99 resultados para medicinsk abort
Resumo:
The aim of this thesis was to identify genetic factors involved in frontotemporal lobar degeneration (FTLD), a neurodegenerative disorder clinically characterised by a progressive change in personality, behaviour and language. FTLD is a genetically complex disorder and a positive family history is found in up to 40% of the cases. In 10-20% of the familial cases the disease can be explained by mutations in the gene encoding the microtubule associated protein tau (MAPT). In the first study we describe the clinical and neuropathological features of a Finnish family with FTLD caused by a mutation in MAPT. We also provide evidence that the pathogenic mechanism of this mutation is through altered splicing of MAPT transcripts. Recently, mutations in the gene encoding progranulin (PGRN) were identified as a major cause of FTLD. In the second study we describe a Swedish family with FTLD caused by a frameshift mutation in PGRN. We provide a clinical and neuropathological description of the family, as well as evidence that the pathogenicity of this mutation is through nonsense-mediated decay of the mutant mRNA transcripts and PGRN haploinsufficiency. In the third study we describe a novel PGRN splice site mutation and a previously described PGRN frameshift mutation, found in a mutation screen of 51 FTLD patients. We describe the clinical and neuropathological characteristics of the mutation carriers and demonstrate that haploinsufficiency is the pathogenic mechanism of the two mutations. In the fourth study we investigate the prevalence of PGRN and MAPT gene dosage alterations in 39 patients with FTLD. No gene dosage alterations were identified, indicating that variations in copy number of the PGRN and MAPT genes are not a common cause of disease, at least not in this FTLD patient collection.
Resumo:
We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10(-8)) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of "credible sets" of variants driving eGFR association signals. Credible variants at the 20 eGFR loci were enriched for DNase I hypersensitivity sites (DHSs) in human kidney cells. DHS credible variants were expression quantitative trait loci for NFATC1 and RGS14 (at the SLC34A1 locus) in multiple tissues. Loss-of-function mutations in ancestral orthologs of both genes in Drosophila melanogaster were associated with altered sensitivity to salt stress. Renal mRNA expression of Nfatc1 and Rgs14 in a salt-sensitive mouse model was also reduced after exposure to a high-salt diet or induced CKD. Our study (1) demonstrates the utility of trans-ethnic fine mapping through integration of GWASs involving diverse populations with genomic annotation from relevant tissues to define molecular mechanisms by which association signals exert their effect and (2) suggests that salt sensitivity might be an important marker for biological processes that affect kidney function and CKD in humans.
Resumo:
Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or β-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining "gold standard" measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development.
Resumo:
Background. The pharmacokinetics and pharmacodynamics of lumefantrine, a component of the most widely used treatment for malaria, artemether-lumefantrine, has not been adequately characterized in young children. Methods. Capillary whole-blood lumefantrine concentration and treatment outcomes were determined in 105 Ugandan children, ages 6 months to 2 years, who were treated for 249 episodes of Plasmodium falciparum malaria with artemether-lumefantrine. Results. Population pharmacokinetics for lumefantrine used a 2-compartment open model with first-order absorption. Age had a significant positive correlation with bioavailability in a model that included allometric scaling. Children not receiving trimethoprim-sulfamethoxazole with capillary whole blood concentrations <200 ng/mL had a 3-fold higher hazard of 28-day recurrent parasitemia, compared with those with concentrations >200 ng/mL (P =. 0007). However, for children receiving trimethoprim-sulfamethoxazole, the risk of recurrent parasitemia did not differ significantly on the basis of this threshold. Day 3 concentrations were a stronger predictor of 28-day recurrence than day 7 concentrations. Conclusions. We demonstrate that age, in addition to weight, is a determinant of lumefantrine exposure, and in the absence of trimethoprim-sulfamethoxazole, lumefantrine exposure is a determinant of recurrent parasitemia. Exposure levels in children aged 6 months to 2 years was generally lower than levels published for older children and adults. Further refinement of artemether-lumefantrine dosing to improve exposure in infants and very young children may be warranted. © 2016 The Author.
Resumo:
Current industry proposals for Hardware Transactional Memory (HTM) focus on best-effort solutions (BE-HTM) where hardware limits are imposed on transactions. These designs may show a significant performance degradation due to high contention scenarios and different hardware and operating system limitations that abort transactions, e.g. cache overflows, hardware and software exceptions, etc. To deal with these events and to ensure forward progress, BE-HTM systems usually provide a software fallback path to execute a lock-based version of the code. In this paper, we propose a hardware implementation of an irrevocability mechanism as an alternative to the software fallback path to gain insight into the hardware improvements that could enhance the execution of such a fallback. Our mechanism anticipates the abort that causes the transaction serialization, and stalls other transactions in the system so that transactional work loss is mini- mized. In addition, we evaluate the main software fallback path approaches and propose the use of ticket locks that hold precise information of the number of transactions waiting to enter the fallback. Thus, the separation of transactional and fallback execution can be achieved in a precise manner. The evaluation is carried out using the Simics/GEMS simulator and the complete range of STAMP transactional suite benchmarks. We obtain significant performance benefits of around twice the speedup and an abort reduction of 50% over the software fallback path for a number of benchmarks.
Resumo:
The purpose of this study was to establish the optimal allometric models to predict International Ski Federation’s ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake (V̇O2max) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine V̇O2max (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects’ FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers’ FISsprint based on V̇O2max, LM, and body mass. The subjects’ test and performance data were as follows: V̇O2max, 4.0±0.3 L min-1; LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: 3.91×105 ∙ VO -6.002maxand 6.95×1010 ∙ LM-5.25; these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on V̇O2max and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose V̇O2max differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher V̇O2max or LM. It is recommended that coaches use the absolute expression of these variables to monitor skiers’ performance-related training adaptations linked to changes in aerobic power and anaerobic capacity.
Resumo:
BACKGROUND: Many publications report the prevalence of chronic kidney disease (CKD) in the general population. Comparisons across studies are hampered as CKD prevalence estimations are influenced by study population characteristics and laboratory methods. METHODS: For this systematic review, two researchers independently searched PubMed, MEDLINE and EMBASE to identify all original research articles that were published between 1 January 2003 and 1 November 2014 reporting the prevalence of CKD in the European adult general population. Data on study methodology and reporting of CKD prevalence results were independently extracted by two researchers. RESULTS: We identified 82 eligible publications and included 48 publications of individual studies for the data extraction. There was considerable variation in population sample selection. The majority of studies did not report the sampling frame used, and the response ranged from 10 to 87%. With regard to the assessment of kidney function, 67% used a Jaffe assay, whereas 13% used the enzymatic assay for creatinine determination. Isotope dilution mass spectrometry calibration was used in 29%. The CKD-EPI (52%) and MDRD (75%) equations were most often used to estimate glomerular filtration rate (GFR). CKD was defined as estimated GFR (eGFR) <60 mL/min/1.73 m(2) in 92% of studies. Urinary markers of CKD were assessed in 60% of the studies. CKD prevalence was reported by sex and age strata in 54 and 50% of the studies, respectively. In publications with a primary objective of reporting CKD prevalence, 39% reported a 95% confidence interval. CONCLUSIONS: The findings from this systematic review showed considerable variation in methods for sampling the general population and assessment of kidney function across studies reporting CKD prevalence. These results are utilized to provide recommendations to help optimize both the design and the reporting of future CKD prevalence studies, which will enhance comparability of study results.
Resumo:
BACKGROUND: Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. OBJECTIVES: The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. METHODS We incorporated participant data from 16 prospective cohorts (n ¼ 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n ¼ 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. RESULTS: Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p ¼ 2.12 1014). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p ¼ 5.95 10211), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence for a causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p ¼ 0.994), which was statistically different from the observational estimate (p ¼ 1.6 105 ). A causal effect of cystatin C was not detected for any individual component of CVD. CONCLUSIONS: Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD.
Resumo:
Background and objectives The matricellular protein osteopontin is involved in the pathogenesis of both kidney and cardiovascular disease. However, whether circulating and urinary osteopontin levels are associated with the risk of these diseases is less studied. Design, setting, participants and measurements A community-based cohort of elderly (Uppsala Longitudinal Study of Adult Men [ULSAM; n=741; mean age: 77 years]) was used to study the associations between plasma and urinary osteopontin, incident chronic kidney disease, and the risk of cardiovascular death during a median of 8 years of follow-up. Results There was no significant cross-sectional correlation between plasma and urinary osteopontin (Spearman rho=0.07, p=0.13). Higher urinary, but not plasma osteopontin, was associated with incident chronic kidney disease in multivariable models adjusted for age, cardiovascular risk factors, baseline glomerular filtration rate (GFR), urinary albumin/creatinine ratio, and inflammatory markers interleukin 6 and high sensitivity C-reactive protein (Odds ratio for 1-standard deviation (SD) of urinary osteopontin, 1.42, 95% CI (1.00-2.02), p=0.048). Conversely, plasma osteopontin, but not urinary osteopontin, was independently associated with cardiovascular death (multivariable hazard ratio per SD increase, 1.35, 95% CI (1.14-1.58), p<0.001, and 1.00, 95% CI (0.79-1.26), p=0.99, respectively). The addition of plasma osteopontin to a model with established cardiovascular risk factors significantly increased the C-statistics for the prediction of cardiovascular death (p<0.002). Conclusions Higher urinary osteopontin specifically predicts incident chronic kidney disease while plasma osteopontin specifically predicts cardiovascular death. Our data put forward osteopontin as an important factor in the detrimental interplay between the kidney and the cardiovascular system. The clinical implications, and why plasma and urinary osteopontin mirror different pathologies, remains to be established.