964 resultados para medical informatics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: In this paper, we present a unified electrodynamic heart model that permits simulations of the body surface potentials generated by the heart in motion. The inclusion of motion in the heart model significantly improves the accuracy of the simulated body surface potentials and therefore also the 12-lead ECG. Methods: The key step is to construct an electromechanical heart model. The cardiac excitation propagation is simulated by an electrical heart model, and the resulting cardiac active forces are used to calculate the ventricular wall motion based on a mechanical model. The source-field point relative position changes during heart systole and diastole. These can be obtained, and then used to calculate body surface ECG based on the electrical heart-torso model. Results: An electromechanical biventricular heart model is constructed and a standard 12-lead ECG is simulated. Compared with a simulated ECG based on the static electrical heart model, the simulated ECG based on the dynamic heart model is more accordant with a clinically recorded ECG, especially for the ST segment and T wave of a V1-V6 lead ECG. For slight-degree myocardial ischemia ECG simulation, the ST segment and T wave changes can be observed from the simulated ECG based on a dynamic heart model, while the ST segment and T wave of simulated ECG based on a static heart model is almost unchanged when compared with a normal ECG. Conclusions: This study confirms the importance of the mechanical factor in the ECG simulation. The dynamic heart model could provide more accurate ECG simulation, especially for myocardial ischemia or infarction simulation, since the main ECG changes occur at the ST segment and T wave, which correspond with cardiac systole and diastole phases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A practical Bayesian approach for inference in neural network models has been available for ten years, and yet it is not used frequently in medical applications. In this chapter we show how both regularisation and feature selection can bring significant benefits in diagnostic tasks through two case studies: heart arrhythmia classification based on ECG data and the prognosis of lupus. In the first of these, the number of variables was reduced by two thirds without significantly affecting performance, while in the second, only the Bayesian models had an acceptable accuracy. In both tasks, neural networks outperformed other pattern recognition approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effective clinical decision making depends upon identifying possible outcomes for a patient, selecting relevant cues, and processing the cues to arrive at accurate judgements of each outcome's probability of occurrence. These activities can be considered as classification tasks. This paper describes a new model of psychological classification that explains how people use cues to determine class or outcome likelihoods. It proposes that clinicians respond to conditional probabilities of outcomes given cues and that these probabilities compete with each other for influence on classification. The model explains why people appear to respond to base rates inappropriately, thereby overestimating the occurrence of rare categories, and a clinical example is provided for predicting suicide risk. The model makes an effective representation for expert clinical judgements and its psychological validity enables it to generate explanations in a form that is comprehensible to clinicians. It is a strong candidate for incorporation within a decision support system for mental-health risk assessment, where it can link with statistical and pattern recognition tools applied to a database of patients. The symbiotic combination of empirical evidence and clinical expertise can provide an important web-based resource for risk assessment, including multi-disciplinary education and training. © 2002 Informa UK Ltd All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current tools for assessing risks associated with mental-health problems require assessors to make high-level judgements based on clinical experience. This paper describes how new technologies can enhance qualitative research methods to identify lower-level cues underlying these judgements, which can be collected by people without a specialist mental-health background. Content analysis of interviews with 46 multidisciplinary mental-health experts exposed the cues and their interrelationships, which were represented by a mind map using software that stores maps as XML. All 46 mind maps were integrated into a single XML knowledge structure and analysed by a Lisp program to generate quantitative information about the numbers of experts associated with each part of it. The knowledge was refined by the experts, using software developed in Flash to record their collective views within the XML itself. These views specified how the XML should be transformed by XSLT, a technology for rendering XML, which resulted in a validated hierarchical knowledge structure associating patient cues with risks. Changing knowledge elicitation requirements were accommodated by flexible transformations of XML data using XSLT, which also facilitated generation of multiple data-gathering tools suiting different assessment circumstances and levels of mental-health knowledge. © 2007 Informa UK Ltd All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background As the use of electronic health records (EHRs) becomes more widespread, so does the need to search and provide effective information discovery within them. Querying by keyword has emerged as one of the most effective paradigms for searching. Most work in this area is based on traditional Information Retrieval (IR) techniques, where each document is compared individually against the query. We compare the effectiveness of two fundamentally different techniques for keyword search of EHRs. Methods We built two ranking systems. The traditional BM25 system exploits the EHRs' content without regard to association among entities within. The Clinical ObjectRank (CO) system exploits the entities' associations in EHRs using an authority-flow algorithm to discover the most relevant entities. BM25 and CO were deployed on an EHR dataset of the cardiovascular division of Miami Children's Hospital. Using sequences of keywords as queries, sensitivity and specificity were measured by two physicians for a set of 11 queries related to congenital cardiac disease. Results Our pilot evaluation showed that CO outperforms BM25 in terms of sensitivity (65% vs. 38%) by 71% on average, while maintaining the specificity (64% vs. 61%). The evaluation was done by two physicians. Conclusions Authority-flow techniques can greatly improve the detection of relevant information in EHRs and hence deserve further study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ageing of the population is a worldwide phenomenon. Numerous ICT-based solutions have been developed for elderly care but mainly connected to the physiological and nursing aspects in services for the elderly. Social work is a profession that should pay attention to the comprehensive wellbeing and social needs of the elderly. Many people experience loneliness and depression in their old age, either as a result of living alone or due to a lack of close family ties and reduced connections with their culture of origin, which results in an inability to participate actively in community activities (Singh & Misra, 2009). Participation in society would enhance the quality of life. With the development of information technology, the use of technology in social work practice has risen dramatically. The aim of this literature review is to map out the state of the art of knowledge about the usage of ICT in elderly care and to figure out research-based knowledge about the usability of ICT for the prevention of loneliness and social isolation of elderly people. The data for the current research comes from the core collection of the Web of Science and the data searching was performed using Boolean? The searching resulted in 216 published English articles. After going through the topics and abstracts, 34 articles were selected for the data analysis that is based on a multi approach framework. The analysis of the research approach is categorized according to some aspects of using ICT by older adults from the adoption of ICT to the impact of usage, and the social services for them. This literature review focused on the function of communication by excluding the applications that mainly relate to physical nursing. The results show that the so-called ‘digital divide’ still exists, but the older adults have the willingness to learn and utilise ICT in daily life, especially for communication. The data shows that the usage of ICT can prevent the loneliness and social isolation of older adults, and they are eager for technical support in using ICT. The results of data analysis on theoretical frames and concepts show that this research field applies different theoretical frames from various scientific fields, while a social work approach is lacking. However, a synergic frame of applied theories will be suggested from the perspective of social work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Reputation, influenced by ratings from past clients, is crucial for providers competing for custom. For new providers with less track record, a few negative ratings can harm their chances of growing. In the JASPR project, we aim to look at how to ensure automated reputation assessments are justified and informative. Even an honest balanced review of a service provision may still be an unreliable predictor of future performance if the circumstances differ. For example, a service may have previously relied on different sub-providers to now, or been affected by season-specific weather events. A common way to ameliorate the ratings that may not reflect future performance is by weighting by recency. We argue that better results are obtained by querying provenance records on how services are provided for the circumstances of provision, to determine the significance of past interactions. Informed by case studies in global logistics, taxi hire, and courtesy car leasing, we are going on to explore the generation of explanations for reputation assessments, which can be valuable both for clients and for providers wishing to improve their match to the market, and applying machine learning to predict aspects of service provision which may influence decisions on the appropriateness of a provider. In this talk, I will give an overview of the research conducted and planned on JASPR. Speaker Biography Dr Simon Miles Simon Miles is a Reader in Computer Science at King's College London, UK, and head of the Agents and Intelligent Systems group. He conducts research in the areas of normative systems, data provenance, and medical informatics at King's, and has published widely and manages a number of research projects in these areas. He was previously a researcher at the University of Southampton after graduating from his PhD at Warwick. He has twice been an organising committee member for the Autonomous Agents and Multi-Agent Systems conference series, and was a member of the W3C working group which published standards on interoperable provenance data in 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The Analytic Hierarchy Process (AHP), developed by Saaty in the late 1970s, is one of the methods for multi-criteria decision making. The AHP disaggregates a complex decision problem into different hierarchical levels. The weight for each criterion and alternative are judged in pairwise comparisons and priorities are calculated by the Eigenvector method. The slowly increasing application of the AHP was the motivation for this study to explore the current state of its methodology in the healthcare context. Methods: A systematic literature review was conducted by searching the Pubmed and Web of Science databases for articles with the following keywords in their titles or abstracts: "Analytic Hierarchy Process," "Analytical Hierarchy Process," "multi-criteria decision analysis," "multiple criteria decision," "stated preference," and "pairwise comparison." In addition, we developed reporting criteria to indicate whether the authors reported important aspects and evaluated the resulting studies' reporting. Results: The systematic review resulted in 121 articles. The number of studies applying AHP has increased since 2005. Most studies were from Asia (almost 30 %), followed by the US (25.6 %). On average, the studies used 19.64 criteria throughout their hierarchical levels. Furthermore, we restricted a detailed analysis to those articles published within the last 5 years (n = 69). The mean of participants in these studies were 109, whereas we identified major differences in how the surveys were conducted. The evaluation of reporting showed that the mean of reported elements was about 6.75 out of 10. Thus, 12 out of 69 studies reported less than half of the criteria. Conclusion: The AHP has been applied inconsistently in healthcare research. A minority of studies described all the relevant aspects. Thus, the statements in this review may be biased, as they are restricted to the information available in the papers. Hence, further research is required to discover who should be interviewed and how, how inconsistent answers should be dealt with, and how the outcome and stability of the results should be presented. In addition, we need new insights to determine which target group can best handle the challenges of the AHP. © 2015 Schmidt et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Errors in the decision-making process are probably the main threat to patient safety in the prehospital setting. The reason can be the change of focus in prehospital care from the traditional "scoop and run" practice to a more complex assessment and this new focus imposes real demands on clinical judgment. The use of Clinical Guidelines (CG) is a common strategy for cognitively supporting the prehospital providers. However, there are studies that suggest that the compliance with CG in some cases is low in the prehospital setting. One possible way to increase compliance with guidelines could be to introduce guidelines in a Computerized Decision Support System (CDSS). There is limited evidence relating to the effect of CDSS in a prehospital setting. The present study aimed to evaluate the effect of CDSS on compliance with the basic assessment process described in the prehospital CG and the effect of On Scene Time (OST). METHODS: In this time-series study, data from prehospital medical records were collected on a weekly basis during the study period. Medical records were rated with the guidance of a rating protocol and data on OST were collected. The difference between baseline and the intervention period was assessed by a segmented regression. RESULTS: In this study, 371 patients were included. Compliance with the assessment process described in the prehospital CG was stable during the baseline period. Following the introduction of the CDSS, compliance rose significantly. The post-intervention slope was stable. The CDSS had no significant effect on OST. CONCLUSIONS: The use of CDSS in prehospital care has the ability to increase compliance with the assessment process of patients with a medical emergency. This study was unable to demonstrate any effects of OST.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To discuss how current research in the area of smart homes and ambient assisted living will be influenced by the use of big data. Methods: A scoping review of literature published in scientific journals and conference proceedings was performed, focusing on smart homes, ambient assisted living and big data over the years 2011-2014. Results: The health and social care market has lagged behind other markets when it comes to the introduction of innovative IT solutions and the market faces a number of challenges as the use of big data will increase. First, there is a need for a sustainable and trustful information chain where the needed information can be transferred from all producers to all consumers in a structured way. Second, there is a need for big data strategies and policies to manage the new situation where information is handled and transferred independently of the place of the expertise. Finally, there is a possibility to develop new and innovative business models for a market that supports cloud computing, social media, crowdsourcing etc. Conclusions: The interdisciplinary area of big data, smart homes and ambient assisted living is no longer only of interest for IT developers, it is also of interest for decision makers as customers make more informed choices among today's services. In the future it will be of importance to make information usable for managers and improve decision making, tailor smart home services based on big data, develop new business models, increase competition and identify policies to ensure privacy, security and liability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SIN FINANCIACIÓN

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objetivo: Identificar las barreras para la unificación de una Historia Clínica Electrónica –HCE- en Colombia. Materiales y Métodos: Se realizó un estudio cualitativo. Se realizaron entrevistas semiestructuradas a profesionales y expertos de 22 instituciones del sector salud, de Bogotá y de los departamentos de Cundinamarca, Santander, Antioquia, Caldas, Huila, Valle del Cauca. Resultados: Colombia se encuentra en una estructuración para la implementación de la Historia Clínica Electrónica Unificada -HCEU-. Actualmente, se encuentra en unificación en 42 IPSs públicas en el departamento de Cundinamarca, el desarrollo de la HCEU en el país es privado y de desarrollo propio debido a las necesidades particulares de cada IPS. Conclusiones: Se identificaron barreras humanas, financieras, legales, organizacionales, técnicas y profesionales en los departamentos entrevistados. Se identificó que la unificación de la HCE depende del acuerdo de voluntades entre las IPSs del sector público, privado, EPSs, y el Gobierno Nacional.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Culturally, philosophically and religiously diverse medical systems including Western medicine, Traditional Chinese Medicine, Ayurvedic Medicine and Homeopathic Medicine, once situated in places and times relatively unconnected from each other, currently co-exist to a point where patients must choose which system to consult. These decisions require comparative analyses, yet the divergence in key underpinning assumptions is so great that comparisons cannot easily be made. However, diverse medical systems can be meaningfully juxtaposed for the purpose of making practical decisions if relevant information is presented appropriately. Information regarding privacy provisions inherent in the typical practice of each medical system is an important element in this juxtaposition. In this paper the information needs of patients making decisions regarding the selection of a medical system are examined.