915 resultados para measurement error model
Resumo:
We present a novel method for retrieving high-resolution, three-dimensional (3-D) nonprecipitating cloud fields in both overcast and broken-cloud situations. The method uses scanning cloud radar and multiwavelength zenith radiances to obtain gridded 3-D liquid water content (LWC) and effective radius (re) and 2-D column mean droplet number concentration (Nd). By using an adaption of the ensemble Kalman filter, radiances are used to constrain the optical properties of the clouds using a forward model that employs full 3-D radiative transfer while also providing full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from a challenging cumulus cloud field produced by a large-eddy simulation snapshot. Uncertainty due to measurement error in overhead clouds is estimated at 20% in LWC and 6% in re, but the true error can be greater due to uncertainties in the assumed droplet size distribution and radiative transfer. Over the entire domain, LWC and re are retrieved with average error 0.05–0.08 g m-3 and ~2 μm, respectively, depending on the number of radiance channels used. The method is then evaluated using real data from the Atmospheric Radiation Measurement program Mobile Facility at the Azores. Two case studies are considered, one stratocumulus and one cumulus. Where available, the liquid water path retrieved directly above the observation site was found to be in good agreement with independent values obtained from microwave radiometer measurements, with an error of 20 g m-2.
Resumo:
Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.
Resumo:
In this paper we deal with the issue of performing accurate testing inference on a scalar parameter of interest in structural errors-in-variables models. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, which has the multivariate normal distribution as special case. We derive a modified signed likelihood ratio statistic that follows a standard normal distribution with a high degree of accuracy. Our Monte Carlo results show that the modified test is much less size distorted than its unmodified counterpart. An application is presented.
Resumo:
Esta dissertação de mestrado em economia foi motivada por uma questão complexa bastante estudada na literatura de economia política nos dias de hoje: as formas como campanhas políticas afetam votação em uma eleição. estudo procura modelar mercado eleitoral brasileiro para deputados federais senadores. Através de um modelo linear, conclui-se que os gastos em campanha eleitoral são fatores decisivos para eleição de um candidato deputado federal. Após reconhecer que variável que mede os gastos em campanha possui erro de medida (devido ao famoso "caixa dois", por exemplo), além de ser endógena uma vez que candidatos com maiores possibilidades de conseguir votos conseguem mais fontes de financiamento -, modelo foi estimado por variáveis instrumentais. Para senadores, utilizando modelos lineares modelos com variável resposta binaria, verifica-se também importância, ainda que em menor escala, da campanha eleitoral, sendo que um fator mais importante para corrida ao senado parece ser uma percepção priori da qualidade do candidato.
Resumo:
In this work, we study the survival cure rate model proposed by Yakovlev et al. (1993), based on a competing risks structure concurring to cause the event of interest, and the approach proposed by Chen et al. (1999), where covariates are introduced to model the risk amount. We focus the measurement error covariates topics, considering the use of corrected score method in order to obtain consistent estimators. A simulation study is done to evaluate the behavior of the estimators obtained by this method for finite samples. The simulation aims to identify not only the impact on the regression coefficients of the covariates measured with error (Mizoi et al. 2007) but also on the coefficients of covariates measured without error. We also verify the adequacy of the piecewise exponential distribution to the cure rate model with measurement error. At the end, model applications involving real data are made
Resumo:
A common approach used to estimate landscape resistance involves comparing correlations of ecological and genetic distances calculated among individuals of a species. However, the location of sampled individuals may contain some degree of spatial uncertainty due to the natural variation of animals moving through their home range or measurement error in plant or animal locations. In this study, we evaluate the ways that spatial uncertainty, landscape characteristics, and genetic stochasticity interact to influence the strength and variability of conclusions about landscape-genetics relationships. We used a neutral landscape model to generate 45 landscapes composed of habitat and non-habitat, varying in percent habitat, aggregation, and structural connectivity (patch cohesion). We created true and alternate locations for 500 individuals, calculated ecological distances (least-cost paths), and simulated genetic distances among individuals. We compared correlations between ecological distances for true and alternate locations. We then simulated genotypes at 15 neutral loci and investigated whether the same influences could be detected in simple Mantel tests and while controlling for the effects of isolation-by distance using the partial Mantel test. Spatial uncertainty interacted with the percentage of habitat in the landscape, but led to only small reductions in correlations. Furthermore, the strongest correlations occurred with low percent habitat, high aggregation, and low to intermediate levels of cohesion. Overall genetic stochasticity was relatively low and was influenced by landscape characteristics.
Resumo:
Weight records of Brazilian Nelore cattle, from birth to 630 d of age, recorded every 3 mo, were analyzed using random regression models. Independent variables were Legendre polynomials of age at recording. The model of analysis included contemporary groups as fixed effects and age of dam as a linear and quadratic covariable. Mean trends were modeled through a cubic regression on orthogonal polynomials of age. Up to four sets of random regression coefficients were fitted for animals' direct and maternal, additive genetic, and permanent environmental effects. Changes in measurement error variances with age were modeled through a variance function. Orders of polyno-mial fit from three to six were considered, resulting in up to 77 parameters to be estimated. Models fitting random regressions modeled the pattern of variances in the data adequately, with estimates similar to those from corresponding univariate analysis. Direct heritability estimates decreased after birth and tended to be lowest at ages at which maternal effect estimates tended to be highest. Maternal heritability estimates increased after birth to a peak around 110 to 120 d of age and decreased thereafter. Additive genetic direct correlation estimates between weights at standard ages (birth, weaning, yearling, and final weight) were moderate to high and maternal genetic and environmental correlations were consistently high. © 2001 American Society of Animal Science. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Weight records of Brazilian Nelore cattle, from birth to 630 d of age, recorded every 3 mo, were analyzed using random regression models. Independent variables were Legendre polynomials of age at recording. The model of analysis included contemporary groups as fixed effects and age of dam as a linear and quadratic covariable. Mean trends were modeled through a cubic regression on orthogonal polynomials of age. Up to four sets of random regression coefficients were fitted for animals' direct and maternal, additive genetic, and permanent environmental effects. Changes in measurement error variances with age were modeled through a variance function. Orders of polynomial fit from three to six were considered, resulting in up to 77 parameters to be estimated. Models fitting random regressions modeled the pattern of variances in the data adequately, with estimates similar to those from corresponding univariate analysis. Direct heritability estimates decreased after birth and tended to be lowest at ages at which maternal effect estimates tended to be highest. Maternal heritability estimates increased after birth to a peak around 110 to 120 d of age and decreased thereafter. Additive genetic direct correlation estimates between weights at standard ages (birth, weaning, yearling, and final weight) were moderate to high and maternal genetic and environmental correlations were consistently high.
Resumo:
In the first chapter, we consider the joint estimation of objective and risk-neutral parameters for SV option pricing models. We propose a strategy which exploits the information contained in large heterogeneous panels of options, and we apply it to S&P 500 index and index call options data. Our approach breaks the stochastic singularity between contemporaneous option prices by assuming that every observation is affected by measurement error. We evaluate the likelihood function by using a MC-IS strategy combined with a Particle Filter algorithm. The second chapter examines the impact of different categories of traders on market transactions. We estimate a model which takes into account traders’ identities at the transaction level, and we find that the stock prices follow the direction of institutional trading. These results are carried out with data from an anonymous market. To explain our estimates, we examine the informativeness of a wide set of market variables and we find that most of them are unambiguously significant to infer the identity of traders. The third chapter investigates the relationship between the categories of market traders and three definitions of financial durations. We consider trade, price and volume durations, and we adopt a Log-ACD model where we include information on traders at the transaction level. As to trade durations, we observe an increase of the trading frequency when informed traders and the liquidity provider intensify their presence in the market. For price and volume durations, we find the same effect to depend on the state of the market activity. The fourth chapter proposes a strategy to express order aggressiveness in quantitative terms. We consider a simultaneous equation model to examine price and volume aggressiveness at Euronext Paris, and we analyse the impact of a wide set of order book variables on the price-quantity decision.
Resumo:
Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. Knowledge of the spatial and temporal distribution of CCN in the atmosphere is essential to understand and describe the effects of aerosols in meteorological models. In this study, CCN properties were measured in polluted and pristine air of different continental regions, and the results were parameterized for efficient prediction of CCN concentrations.The continuous-flow CCN counter used for size-resolved measurements of CCN efficiency spectra (activation curves) was calibrated with ammonium sulfate and sodium chloride aerosols for a wide range of water vapor supersaturations (S=0.068% to 1.27%). A comprehensive uncertainty analysis showed that the instrument calibration depends strongly on the applied particle generation techniques, Köhler model calculations, and water activity parameterizations (relative deviations in S up to 25%). Laboratory experiments and a comparison with other CCN instruments confirmed the high accuracy and precision of the calibration and measurement procedures developed and applied in this study.The mean CCN number concentrations (NCCN,S) observed in polluted mega-city air and biomass burning smoke (Beijing and Pearl River Delta, China) ranged from 1000 cm−3 at S=0.068% to 16 000 cm−3 at S=1.27%, which is about two orders of magnitude higher than in pristine air at remote continental sites (Swiss Alps, Amazonian rainforest). Effective average hygroscopicity parameters, κ, describing the influence of chemical composition on the CCN activity of aerosol particles were derived from the measurement data. They varied in the range of 0.3±0.2, were size-dependent, and could be parameterized as a function of organic and inorganic aerosol mass fraction. At low S (≤0.27%), substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity were observed in polluted air (fresh soot particles with κ≈0.01). Thus, the aerosol particle mixing state needs to be known for highly accurate predictions of NCCN,S. Nevertheless, the observed CCN number concentrations could be efficiently approximated using measured aerosol particle number size distributions and a simple κ-Köhler model with a single proxy for the effective average particle hygroscopicity. The relative deviations between observations and model predictions were on average less than 20% when a constant average value of κ=0.3 was used in conjunction with variable size distribution data. With a constant average size distribution, however, the deviations increased up to 100% and more. The measurement and model results demonstrate that the aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the measurement results and parameterizations presented in this study can be directly implemented in detailed process models as well as in large-scale atmospheric and climate models for efficient description of the CCN activity of atmospheric aerosols.
Resumo:
The present doctoral thesis is structured as a collection of three essays. The first essay, “SOC(HE)-Italy: a classification for graduate occupations” presents the conceptual basis, the construction, the validation and the application to the Italian labour force of the occupational classification termed SOC(HE)-Italy. I have developed this classification under the supervision of Kate Purcell during my period as a visiting research student at the Warwick Institute for Emplyment Research. This classification links the constituent tasks and duties of a particular job to the relevant knowledge and skills imparted via Higher Education (HE). It is based onto the SOC(HE)2010, an occupational classification first proposed by Kate Purcell in 2013, but differently constructed. In the second essay “Assessing the incidence and wage effects of overeducation among Italian graduates using a new measure for educational requirements” I utilize this classification to build a valid and reliable measure for job requirements. The lack of an unbiased measure for this dimension constitutes one of the major constraints to achieve a generally accepted measurement of overeducation. Estimations of overeducation incidence and wage effects are run onto AlmaLaurea data from the survey on graduates career paths. I have written this essay and obtained these estimates benefiting of the help and guidance of Giovanni Guidetti and Giulio Pedrini. The third and last essay titled “Overeducation in the Italian labour market: clarifying the concepts and addressing the measurement error problem” addresses a number of theoretical issues concerning the concepts of educational mismatch and overeducation. Using Istat data from RCFL survey I run estimates of the ORU model for the whole Italian labour force. In my knowledge, this is the first time ever such model is estimated on such population. In addition, I adopt the new measure of overeducation based onto the SOC(HE)-Italy classification.
Resumo:
For the development of meniscal substitutes and related finite element models it is necessary to know the mechanical properties of the meniscus and its attachments. Measurement errors can falsify the determination of material properties. Therefore the impact of metrological and geometrical measurement errors on the determination of the linear modulus of human meniscal attachments was investigated. After total differentiation the error of the force (+0.10%), attachment deformation (−0.16%), and fibre length (+0.11%) measurements almost annulled each other. The error of the cross-sectional area determination ranged from 0.00%, gathered from histological slides, up to 14.22%, obtained from digital calliper measurements. Hence, total measurement error ranged from +0.05% to −14.17%, predominantly affected by the cross-sectional area determination error. Further investigations revealed that the entire cross-section was significantly larger compared to the load-carrying collagen fibre area. This overestimation of the cross-section area led to an underestimation of the linear modulus of up to −36.7%. Additionally, the cross-sections of the collagen-fibre area of the attachments significantly varied up to +90% along their longitudinal axis. The resultant ratio between the collagen fibre area and the histologically determined cross-sectional area ranged between 0.61 for the posterolateral and 0.69 for the posteromedial ligament. The linear modulus of human meniscal attachments can be significantly underestimated due to the use of different methods and locations of cross-sectional area determination. Hence, it is suggested to assess the load carrying collagen fibre area histologically, or, alternatively, to use the correction factors proposed in this study.
Resumo:
We derive the additive-multiplicative error model for microarray intensities, and describe two applications. For the detection of differentially expressed genes, we obtain a statistic whose variance is approximately independent of the mean intensity. For the post hoc calibration (normalization) of data with respect to experimental factors, we describe a method for parameter estimation.
Resumo:
High density oligonucleotide expression arrays are a widely used tool for the measurement of gene expression on a large scale. Affymetrix GeneChip arrays appear to dominate this market. These arrays use short oligonucleotides to probe for genes in an RNA sample. Due to optical noise, non-specific hybridization, probe-specific effects, and measurement error, ad-hoc measures of expression, that summarize probe intensities, can lead to imprecise and inaccurate results. Various researchers have demonstrated that expression measures based on simple statistical models can provide great improvements over the ad-hoc procedure offered by Affymetrix. Recently, physical models based on molecular hybridization theory, have been proposed as useful tools for prediction of, for example, non-specific hybridization. These physical models show great potential in terms of improving existing expression measures. In this paper we demonstrate that the system producing the measured intensities is too complex to be fully described with these relatively simple physical models and we propose empirically motivated stochastic models that compliment the above mentioned molecular hybridization theory to provide a comprehensive description of the data. We discuss how the proposed model can be used to obtain improved measures of expression useful for the data analysts.