983 resultados para masonry walls
Resumo:
Although the issue of the out-of-plane response of unreinforced masonry structures under earthquake excitation is well known with consensus among the research community, this issue is simultaneously one of the more complex and most neglected areas on the seismic assessment of existing buildings. Nonetheless, its characterization should be found on the solid knowledge of the phenomenon and on the complete understanding of methodologies currently used to describe it. Based on this assumption, this article presents a general framework on the issue of the out-of-plane performance of unreinforced masonry structures, beginning with a brief introduction to the topic, followed by a compact state of art in which the principal methodologies proposed to assess the out-of-plane behavior of unreinforced masonry structures are presented. Different analytical approaches are presented, namely force and displacement-based, complemented with the presentation of existing numerical tools for the purpose presented above. Moreover, the most relevant experimental campaigns carried out in order to reproduce the phenomenon are reviewed and briefly discussed.
Resumo:
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so-called local mechanisms, often associated with the out-of-plane wall behavior, whose stability is evaluated by static force-based approaches and, more recently, by some displacement-based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no-tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi-body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full-scale shaking-table tests on stone masonry buildings: a sacco-stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two-storey double-leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE).
Resumo:
The Azores archipelago is a zone with a vast cultural heritage, presenting a building stock mainly constructed in traditional stone masonry. It is known that this type of construction exhibits poor behaviour under seismic excitations; however it is extensively used in seismic prone areas, such as this case. The 9th of July of 1998 earthquake was the last seismic event in the islands, leaving many traditional stone constructions severely damaged or totally destroyed. This scenario led to an effort by the local government of improving the seismic resistance of these constructions, with the application of several reinforcement techniques. This work aims to study some of the most used reinforcement schemes after the 1998 earthquake, and to assess their effectiveness in the mitigation of the construction’s seismic vulnerability. A brief evaluation of the cost versus benefit of these retrofitting techniques is also made, seeking to identify those that are most suitable for each building typology. Thus, it was sought to analyze the case of real structures with different geometrical and physical characteristics, by establishing a comparison between the seismic performance of reinforced and non-reinforced structures. The first section contains the analysis of a total of six reinforcement scenarios for each building chosen. Using the recorded 1998 earthquake accelerograms, a linear time-history analysis was performed for each reinforcement scenario. A comparison was then established between the maximum displacements, inter-storey drift and maximum stress obtained, in order to evaluate the global seismic response of each reinforced structure. In the second part of the work, the examination of the performance obtained in the previous section, in relation to the cost of implementing each reinforcement technique, allowed to draw conclusions concerning the viability of implementing each reinforcement method, based on the book value of the buildings in study.
Resumo:
Tese apresentada para obtenção do Grau de Doutor em Engenharia Civil na especialidade de Reabilitação do Património Edificado, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
RESTAPIA 2012 - Int. Conf. on Rammed Earth Conservation, Valencia, 21-23 June 2012
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibilit, LNEC, Lisbon, 24-26 September 2008
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008
Resumo:
9th International Masonry Conference 2014, 7-9 July, Universidade do Minho, Guimarães
Resumo:
Tese para obtenção do Grau de Doutor em Engenharia Civil, Especialidade Ciências da Construção
Resumo:
4th Conference COST ACTION FP1303 – Designing with Bio-based Materials – Challenges and opportiunities. INIA – CSIC, Madrid, 24-25 February 2016. Book of abstracts, T.Troya, J.Galván, D.Jones (Eds.), INIA and IETcc – CSIS, pg. 79-80 (ISBN: 978-91-88349-16-3)
Resumo:
A research work was performed in order to assess the potential application of processed granulate of corn cob (PCC) as an alternative lightweight aggregate for the manufacturing process of lightweight concrete masonry units (CMU). Therefore, CMU-PCC were prepared in a factory using a typical lightweight concrete mixture for non-structural purposes. Additionally, lightweight concrete masonry units based on a currently applied lightweight aggregate such as expanded clay (CMU-EC) were also manufactured. An experimental work allowed achieving a set of results that suggest that the proposed building product presents interesting material properties within the masonry wall context. Therefore, this unit is promising for both interior and exterior applications. This conclusion is even more relevant considering that corn cob is an agricultural waste product.
Resumo:
This study deals with the characterization of masonry mortars produced with different binders and sands. Several properties of the mortars were determined, like consistence, compressive and flexural strengths, shrinkage and fracture energy. By varying the type of binder (Portland cement, hydrated lime and hydraulic lime) and the type of sand (natural or artificial), it was possible to draw some conclusions about the influence of the composition on mortars properties. The results showed that the use of Portland cement makes the achievement of high strength classes easier. This was due to the slower hardening of lime compared with cement. The results of fracture energy tests showed much higher values for artificial sand mortars when compared with natural sand ones. This is due to the higher roughness of artificial sand particles which provided better adhesion between sand and binder.
Resumo:
The development of novel strengthening techniques to address the seismic vulnerability of masonry elements is gradually leading to simpler, faster and more effective strengthening strategies. In particular, the use of fabric reinforced cementitious matrix systems is considered of great potential, given the increase of ductility achieved with simple and economic strengthening procedures. To assess the effectiveness of these strengthening systems, and considering that the seismic action is involved, one important component of the structural behaviour is the in-plane cyclic response. In this work is discussed the applicability of the diagonal tensile test for the assessment of the cyclic response of strengthened masonry. The results obtained allowed to assess the contribution of the strengthening system to the increase of the load carrying capacity of masonry elements, as well as to evaluate the damage evolution and the stiffness degradation mechanisms developing under cyclic loading.