786 resultados para marine resource management
Resumo:
With the increasing recognition that climate change is occurring and having large impacts on living marine resources, a sound ecosystem approach to management of those resources requires both understanding how climate affects ecosystems and integration of that understanding into management processes. The National Marine Fisheries Service (NMFS) must identify how changing climatic conditions will impact its mission and must be prepared to adapt to these changes. This document identifies the climate related ecosystem concerns in the regional marine ecosystems for which NMFS has living marine resource management responsibilities, what NMFS is currently doing to address these concerns, what NMFS must do going forward to address these concerns, and what climate information is needed to integrate climate into resource management. The regional ecosystems included in this analysis are: the Northeast U.S. Continental Shelf; the Southeast U.S. Continental Shelf, Gulf of Mexico, and U.S. Caribbean; the California Current Ecosystem; the Alaskan Ecosystem Complex; the Pacific Island Ecosystem Complex; the Eastern Tropical Pacific; North Pacific Highly Migratory Species; and the Antarctic.
Resumo:
The exploding demand for services like the World Wide Web reflects the potential that is presented by globally distributed information systems. The number of WWW servers world-wide has doubled every 3 to 5 months since 1993, outstripping even the growth of the Internet. At each of these self-managed sites, the Common Gateway Interface (CGI) and Hypertext Transfer Protocol (HTTP) already constitute a rudimentary basis for contributing local resources to remote collaborations. However, the Web has serious deficiencies that make it unsuited for use as a true medium for metacomputing --- the process of bringing hardware, software, and expertise from many geographically dispersed sources to bear on large scale problems. These deficiencies are, paradoxically, the direct result of the very simple design principles that enabled its exponential growth. There are many symptoms of the problems exhibited by the Web: disk and network resources are consumed extravagantly; information search and discovery are difficult; protocols are aimed at data movement rather than task migration, and ignore the potential for distributing computation. However, all of these can be seen as aspects of a single problem: as a distributed system for metacomputing, the Web offers unpredictable performance and unreliable results. The goal of our project is to use the Web as a medium (within either the global Internet or an enterprise intranet) for metacomputing in a reliable way with performance guarantees. We attack this problem one four levels: (1) Resource Management Services: Globally distributed computing allows novel approaches to the old problems of performance guarantees and reliability. Our first set of ideas involve setting up a family of real-time resource management models organized by the Web Computing Framework with a standard Resource Management Interface (RMI), a Resource Registry, a Task Registry, and resource management protocols to allow resource needs and availability information be collected and disseminated so that a family of algorithms with varying computational precision and accuracy of representations can be chosen to meet realtime and reliability constraints. (2) Middleware Services: Complementary to techniques for allocating and scheduling available resources to serve application needs under realtime and reliability constraints, the second set of ideas aim at reduce communication latency, traffic congestion, server work load, etc. We develop customizable middleware services to exploit application characteristics in traffic analysis to drive new server/browser design strategies (e.g., exploit self-similarity of Web traffic), derive document access patterns via multiserver cooperation, and use them in speculative prefetching, document caching, and aggressive replication to reduce server load and bandwidth requirements. (3) Communication Infrastructure: Finally, to achieve any guarantee of quality of service or performance, one must get at the network layer that can provide the basic guarantees of bandwidth, latency, and reliability. Therefore, the third area is a set of new techniques in network service and protocol designs. (4) Object-Oriented Web Computing Framework A useful resource management system must deal with job priority, fault-tolerance, quality of service, complex resources such as ATM channels, probabilistic models, etc., and models must be tailored to represent the best tradeoff for a particular setting. This requires a family of models, organized within an object-oriented framework, because no one-size-fits-all approach is appropriate. This presents a software engineering challenge requiring integration of solutions at all levels: algorithms, models, protocols, and profiling and monitoring tools. The framework captures the abstract class interfaces of the collection of cooperating components, but allows the concretization of each component to be driven by the requirements of a specific approach and environment.
Resumo:
The pervasiveness of personal computing platforms offers an unprecedented opportunity to deploy large-scale services that are distributed over wide physical spaces. Two major challenges face the deployment of such services: the often resource-limited nature of these platforms, and the necessity of preserving the autonomy of the owner of these devices. These challenges preclude using centralized control and preclude considering services that are subject to performance guarantees. To that end, this thesis advances a number of new distributed resource management techniques that are shown to be effective in such settings, focusing on two application domains: distributed Field Monitoring Applications (FMAs), and Message Delivery Applications (MDAs). In the context of FMA, this thesis presents two techniques that are well-suited to the fairly limited storage and power resources of autonomously mobile sensor nodes. The first technique relies on amorphous placement of sensory data through the use of novel storage management and sample diffusion techniques. The second approach relies on an information-theoretic framework to optimize local resource management decisions. Both approaches are proactive in that they aim to provide nodes with a view of the monitored field that reflects the characteristics of queries over that field, enabling them to handle more queries locally, and thus reduce communication overheads. Then, this thesis recognizes node mobility as a resource to be leveraged, and in that respect proposes novel mobility coordination techniques for FMAs and MDAs. Assuming that node mobility is governed by a spatio-temporal schedule featuring some slack, this thesis presents novel algorithms of various computational complexities to orchestrate the use of this slack to improve the performance of supported applications. The findings in this thesis, which are supported by analysis and extensive simulations, highlight the importance of two general design principles for distributed systems. First, a-priori knowledge (e.g., about the target phenomena of FMAs and/or the workload of either FMAs or DMAs) could be used effectively for local resource management. Second, judicious leverage and coordination of node mobility could lead to significant performance gains for distributed applications deployed over resource-impoverished infrastructures.
Resumo:
We introduce Collocation Games as the basis of a general framework for modeling, analyzing, and facilitating the interactions between the various stakeholders in distributed systems in general, and in cloud computing environments in particular. Cloud computing enables fixed-capacity (processing, communication, and storage) resources to be offered by infrastructure providers as commodities for sale at a fixed cost in an open marketplace to independent, rational parties (players) interested in setting up their own applications over the Internet. Virtualization technologies enable the partitioning of such fixed-capacity resources so as to allow each player to dynamically acquire appropriate fractions of the resources for unencumbered use. In such a paradigm, the resource management problem reduces to that of partitioning the entire set of applications (players) into subsets, each of which is assigned to fixed-capacity cloud resources. If the infrastructure and the various applications are under a single administrative domain, this partitioning reduces to an optimization problem whose objective is to minimize the overall deployment cost. In a marketplace, in which the infrastructure provider is interested in maximizing its own profit, and in which each player is interested in minimizing its own cost, it should be evident that a global optimization is precisely the wrong framework. Rather, in this paper we use a game-theoretic framework in which the assignment of players to fixed-capacity resources is the outcome of a strategic "Collocation Game". Although we show that determining the existence of an equilibrium for collocation games in general is NP-hard, we present a number of simplified, practically-motivated variants of the collocation game for which we establish convergence to a Nash Equilibrium, and for which we derive convergence and price of anarchy bounds. In addition to these analytical results, we present an experimental evaluation of implementations of some of these variants for cloud infrastructures consisting of a collection of multidimensional resources of homogeneous or heterogeneous capacities. Experimental results using trace-driven simulations and synthetically generated datasets corroborate our analytical results and also illustrate how collocation games offer a feasible distributed resource management alternative for autonomic/self-organizing systems, in which the adoption of a global optimization approach (centralized or distributed) would be neither practical nor justifiable.
Resumo:
The Archaeological Reconnaissance Survey of United States Naval Academy will provide the Navy with a rich understanding of the history of this property. A National Register of Historic Places District, such as the Academy, deserves a thorough analysis of its past, in order to preserve what exists and to plan for the future. The goal of this project is to investigate the history of the Academy through traditional historic research, innovative computer analysis of historic maps, oral history interviews, and tract histories. This information has been synthesized to provide the Navy with a planning tool for Public Works, a concise look at the cartographic history of the Academy, and reference manual of the vast amounts of information which have been gathered during the course of this project. This information can serve as a reference tool to help the Public Works department comply with Section 106 regulations of the Historic Sites Preservation Act, with regard to construction. It can also serve as a source of cartographic history for those interested in the Academy's physical development, and as a way of preserving the culture of residents in Annapolis. This program and archaeological survey will ultimately serve to add to the rich history of the United States Naval Academy while preserving an important part of our nation's heritage.
Resumo:
1. Marine legislation, the key means by which the conservation of marine biodiversity is achieved, has been developing since the 1960s. In recent decades, an increasing focus on ‘holistic’ policy development is evident, compared with earlier ‘piecemeal’ sectoral approaches. Important marine legislative tools being used in the United Kingdom, and internationally, include the designation of marine protected areas and the Marine Strategy Framework Directive (MSFD) with its aim of meeting ‘Good Environmental Status’ (GES) for European seas by 2020. 2. There is growing evidence of climate change impacts on marine biodiversity, which may compromise the effectiveness of any legislation intended to promote sustainable marine resource management. 3. A review of key marine biodiversity legislation relevant to the UK shows climate change was not considered in the drafting of much early legislation. Despite the huge increase in knowledge of climate change impacts in recent decades, legislation is still limited in how it takes these impacts into account. There is scope, however, to account for climate change in implementing much of the legislation through (a) existing references to environmental variability; (b) review cycles; and (c) secondary legislation and complementary policy development. 4. For legislation relating to marine protected areas (e.g. the EC Habitats and Birds Directives), climate change has generally not been considered in the site-designation process, or for ongoing management, with the exception of the Marine (Scotland) Act. Given that changing environmental conditions (e.g. rising temperatures and ocean acidification) directly affect the habitats and species that sites are designated for, how this legislation is used to protect marine biodiversity in a changing climate requires further consideration. 5. Accounting for climate change impacts on marine biodiversity in the development and implementation of legislation is vital to enable timely, adaptive management responses. Marine modelling can play an important role in informing management decisions.
Resumo:
This article provides an in-depth analysis of selective land use and resource management policies in the Province of Ontario, Canada. It examines their relative capacity to recognize the rights of First Nations and Aboriginal peoples and their treaty rights, as well as their embodiment of past Crown–First Nations relationships. An analytical framework was developed to evaluate the manifest and latent content of 337 provincial texts, including 32 provincial acts, 269 regulatory documents, 16 policy statements, and 5 provincial plans. This comprehensive document analysis classified and assessed how current provincial policies address First Nation issues and identified common trends and areas of improvement. The authors conclude that there is an immediate need for guidance on how provincial authorities can improve policy to make relationship-building a priority to enhance and sustain relationships between First Nations and other jurisdictions.
Resumo:
A fundamental aspect of health care management is the effective allocation of resources. This is of particular importance in geriatric hospitals where elderly patients tend to have more complex needs. Hospital managers would benefit immensely if they had advance knowledge of patient duration of stay in hospital. Managers could assess the costs of patient care and make allowances for these in their budget. In this paper, we tackle this important problem via a model which predicts the duration of stay distribution of patients in hospital. The approach uses phase-type distributions conditioned on a Bayesian belief network.