971 resultados para malodorous sulfur
Resumo:
[EN]A new one-dimensional model of DMSP/DMS dynamics (DMOS) is developed and applied to the Sargasso Sea in order to explain what drives the observed dimethylsulfide (DMS) summer paradox: a summer DMS concentration maximum concurrent with a minimum in the biomass of phytoplankton, the producers of the DMS precursor dimethylsulfoniopropionate (DMSP). Several mechanisms have been postulated to explain this mismatch: a succession in phytoplankton species composition towards higher relative abundances of DMSP producers in summer; inhibition of bacterial DMS consumption by ultraviolet radiation (UVR); and direct DMS production by phytoplankton due to UVR-induced oxidative stress. None of these hypothetical mechanisms, except for the first one, has been tested with a dynamic model. We have coupled a new sulfur cycle model that incorporates the latest knowledge on DMSP/DMS dynamics to a preexisting nitrogen/carbon-based ecological model that explicitly simulates the microbial-loop. This allows the role of bacteria in DMS production and consumption to be represented and quantified. The main improvements of DMOS with respect to previous DMSP/DMS models are the explicit inclusion of: solar-radiation inhibition of bacterial sulfur uptakes; DMS exudation by phytoplankton caused by solar-radiation-induced stress; and uptake of dissolved DMSP by phytoplankton. We have conducted a series of modeling experiments where some of the DMOS sulfur paths are turned “off” or “on,” and the results on chlorophyll-a, bacteria, DMS, and DMSP (particulate and dissolved) concentrations have been compared with climatological data of these same variables. The simulated rate of sulfur cycling processes are also compared with the scarce data available from previous works. All processes seem to play a role in driving DMS seasonality. Among them, however, solar-radiation-induced DMS exudation by phytoplankton stands out as the process without which the model is unable to produce realistic DMS simulations and reproduce the DMS summer paradox.
Resumo:
A new method to measure the sulfur isotopic composition of individual aerosol particles by NanoSIMS has been developed and tested on several standards such as barite (BaSO4), anhydrite (CaSO4), gypsum (CaSO4·2H2O), mascagnite ((NH4)2SO4), epsomite (MgSO4·7H2O), magnesium sulfate (MgSO4·xH2O), thenardite (Na2SO4), boetite (K2SO4) and cysteine (an amino acid). This ion microprobe technique employs a Cs+ primary ion beam and measures negative secondary ions permitting the analysis of sulfur isotope ratios in individual aerosol particles down to 500 nm in size (0.001-0.5 ng of sample material). The grain-to-grain reproducibility of measurements is typically 5‰ (1σ) for micron-sized grains, <5‰ for submicron-sized grains, and <2‰ for polished thin sections and ultra microtome sections which were studied for comparison. The role of chemical omposition (matrix effect) and sample preparation techniques on the instrumental mass fractionation (IMF) of the 34S/32S ratio in the NanoSIMS has been investigated. The IMF varies by ~15‰ between the standards studied here. A good correlation between IMF and ionic radius of the cations in sulfates was observed. This permits to infer IMF corrections even for sulfates for which no isotope standards are available. The new technique allows to identify different types of primary and secondary sulfates based on their chemical composition and to measure their isotopic signature separately. It was applied to marine aerosol samples collected in Mace Head and urban aerosol samples collected in Mainz. It was shown that primary sulfate particles such as sulfate in NaCl or gypsum particles precipitated from ocean water retain the original isotopic signature of their source. The isotopic composition of secondary sulfate depends on the isotopic composition of precursor SO2 and the oxidation pathway. The 34S/32S fractionation with respect to the precursor SO2 is -9‰ for homogeneous oxidation and +16.5‰ for heterogeneous oxidation. This large difference between the isotopic fractionation of both pathways allows identifying the oxidation pathway from which the SO42- in a secondary sulfate particle is derived, by means of its sulfur isotope ratio, provided that the isotopic signature of the precursor SO2 is known. The isotopic composition of the precursor SO2 of secondary sulfates was calculated based on the isotopic composition of particles with known oxidation pathway such as fine mode ammonium sulfate.
Resumo:
Sulfate aerosol plays an important but uncertain role in cloud formation and radiative forcing of the climate, and is also important for acid deposition and human health. The oxidation of SO2 to sulfate is a key reaction in determining the impact of sulfate in the environment through its effect on aerosol size distribution and composition. This thesis presents a laboratory investigation of sulfur isotope fractionation during SO2 oxidation by the most important gas-phase and heterogeneous pathways occurring in the atmosphere. The fractionation factors are then used to examine the role of sulfate formation in cloud processing of aerosol particles during the HCCT campaign in Thuringia, central Germany. The fractionation factor for the oxidation of SO2 by ·OH radicals was measured by reacting SO2 gas, with a known initial isotopic composition, with ·OH radicals generated from the photolysis of water at -25, 0, 19 and 40°C (Chapter 2). The product sulfate and the residual SO2 were collected as BaSO4 and the sulfur isotopic compositions measured with the Cameca NanoSIMS 50. The measured fractionation factor for 34S/32S during gas phase oxidation is αOH = (1.0089 ± 0.0007) − ((4 ± 5) × 10−5 )T (°C). Fractionation during oxidation by major aqueous pathways was measured by bubbling the SO2 gas through a solution of H2 O2
Resumo:
Different concepts for the synthesis of sulfur-containing polymers as well as their adsorption onto gold surfaces were studied. The present work is divided into three parts. The main part focuses on the synthesis of poly(1,2-alkylene sulfides) (“polysulfides”) with complex architectures on the basis of polyether-based macroinitiators by the anionic ring-opening polymerization of ethylene sulfide and propylene sulfide. This synthetic tool kit allowed the synthesis of star-shaped, brush-like, comb-like and pom-pom-like polysulfides, the latter two with an additional poly(ethylene glycol) chain. Additionally, the number of polysulfide arms as well as the monomer composition could be varied over a wide range to obtain copolymers with multiple thioether functionalities.rnThe second section deals with the synthesis of a novel lipoic acid-based initiator for ring-opening polymerizations for lactones and epoxides. A straightforward approach was selected to accomplish the ability to obtain tailored polymers with a common used disulfide-anchoring group, without the drawbacks of post-polymerization functionalization. rnIn the third part, a new class of block-copolymers consisting of polysulfides and polyesters were investigated. For the first time this approach enabled the use of hydroxyl-terminated poly(propylene sulfide) as macroinitiator for the synthesis of a second block.rnThe adsorption efficiency of those different polymer classes onto gold nanoparticles as well as gold rnsupports was studied via different methods.rn
Resumo:
Homeopathic preparations are used in homeopathy and anthroposophic medicine. Although there is evidence of effectiveness in several clinical studies, including double-blinded randomized controlled trials, their nature and mode of action could not be explained with current scientific approaches yet. Several physical methods have already been applied to investigate homeopathic preparations but it is yet unclear which methods are best suited to identify characteristic physicochemical properties of homeopathic preparations. The aim of this study was to investigate homeopathic preparations with UV-spectroscopy. In a blinded, randomized, controlled experiment homeopathic preparations of copper sulfate (CuSO(4); 11c-30c), quartz (SiO(2); 10c-30c, i.e., centesimal dilution steps) and sulfur (S; 11×-30×, i.e., decimal dilution steps) and controls (one-time succussed diluent) were investigated using UV-spectroscopy and tested for contamination by inductively coupled plasma mass spectrometry (ICP-MS). The UV transmission for homeopathic preparations of CuSO(4) preparations was significantly lower than in controls. The transmission seemed to be also lower for both SiO(2) and S, but not significant. The mean effect size (95% confidence interval) was similar for the homeopathic preparations: CuSO(4) (pooled data) 0.0544% (0.0260-0.0827%), SiO(2) 0.0323% (-0.0064% to 0.0710%) and S 0.0281% (-0.0520% to 0.1082%). UV transmission values of homeopathic preparations had a significantly higher variability compared to controls. In none of the samples the concentration of any element analyzed by ICP-MS exceeded 100 ppb. Lower transmission of UV light may indicate that homeopathic preparations are less structured or more dynamic than their succussed pure solvent.
Resumo:
Homeopathic remedies are produced by potentising, that is, the serial logarithmic dilution and succussion of a mother tincture. Techniques like ultraviolet spectroscopy, nuclear magnetic resonance, calorimetry, or thermoluminescence have been used to investigate their physical properties. In this study, homeopathic centesimal (c) potencies (6c to 30c) of copper sulfate, Hypericum perforatum, and sulfur as well as succussed water controls were prepared. Samples of these preparations were exposed to external physical factors like heat, pressure, ultraviolet radiation, or electromagnetic fields to mimic possible everyday storage conditions. The median transmissions from 190nm to 340nm and 220nm to 340nm were determined by ultraviolet light spectroscopy on five measurement days distributed over several months. Transmissions of controls and potencies of sulfur differed significantly on two of five measurement days and after exposure to physical factors. Transmissions of potencies exposed to ultraviolet light and unexposed potencies of copper sulfate and Hypericum perforatum differed significantly. Potency levels 6c to 30c were also compared, and wavelike patterns of higher and lower transmissions were found. The Kruskal-Wallis test yielded significant differences for the potency levels of all three substances. Aiming at understanding the physical properties of homeopathic preparations, this study confirmed and expanded the findings of previous studies.
Resumo:
The exsolution of volatiles from magma maintains an important control on volcanic eruption styles. The nucleation, growth, and connectivity of bubbles during magma ascent provide the driving force behind eruptions, and the rate, volume, and ease of gas exsolution can affect eruptive activity. Volcanic plumes are the observable consequence of this magmatic degassing, and remote sensing techniques allow us to quantify changes in gas exsolution. However, until recently the methods used to measure volcanic plumes did not have the capability of detecting rapid changes in degassing on the scale of standard geophysical observations. The advent of the UV camera now makes high sample rate gas measurements possible. This type of dataset can then be compared to other volcanic observations to provide an in depth picture of degassing mechanisms in the shallow conduit. The goals of this research are to develop a robust methodology for UV camera field measurements of volcanic plumes, and utilize this data in conjunction with seismoacoustic records to illuminate degassing processes. Field and laboratory experiments were conducted to determine the effects of imaging conditions, vignetting, exposure time, calibration technique, and filter usage on the UV camera sulfur dioxide measurements. Using the best practices determined from these studies, a field campaign was undertaken at Volcán de Pacaya, Guatemala. Coincident plume sulfur dioxide measurements, acoustic recordings, and seismic observations were collected and analyzed jointly. The results provide insight into the small explosive features, variations in degassing rate, and plumbing system of this complex volcanic system. This research provides useful information for determining volcanic hazard at Pacaya, and demonstrates the potential of the UV camera in multiparameter studies.
Resumo:
The experiments which were preformed showed that sulfur dioxide would reduce the ferric ion content of the mine waters to a very low figure. The reduction in the ferric ion content would improve the efficiency of the precipitation process, and also increase the recovery of copper.
Resumo:
Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.
Resumo:
Measurements of delta(34)S covering the years 1935-76 and including the 1963 Agung (Indonesia) eruption were made on a West Antarctic firn core, RIDSA (78.73 degrees S, 116.33 degrees W; 1740m a.s.l.), and results are used to unravel potential source functions in the sulfur cycle over West Antarctica. The delta(34)S values Of SO42- range from 3.1 parts per thousand to 9.9 parts per thousand. These values are lower than those reported for central Antarctica, from near South Pole station, of 9.3-18.1 parts per thousand (Patris and others, 2000). While the Agung period is isotopically distinct at South Pole, it is not in the RIDSA dataset, suggesting differences in the source associations for the sulfur cycle between these two regions. Given the relatively large input of marine aerosols at RIDSA (determined from Na+ data and the seasonal SO42- cycle), there is likely a large marine biogenic SO42- influence. The delta(34)S values indicate, however, that this marine biogenic SO42-, with a well-established delta(34)S of 18 parts per thousand, is mixing with SO42- that has extremely negative delta(34)S values to produce the measured isotope values in the RIDSA core. We suggest that the transport and deposition of stratospheric SO42- in West Antarctica, combined with local volcanic input, accounts for the observed variance in delta(34)S values.