982 resultados para mRNA differential display
Resumo:
A reciprocal subtraction differential RNA display (RSDD) approach has been developed that permits the rapid and efficient identification and cloning of both abundant and rare differentially expressed genes. RSDD comprises reciprocal subtraction of cDNA libraries followed by differential RNA display. The RSDD strategy was applied to analyze the gene expression alterations resulting during cancer progression as adenovirus-transformed rodent cells developed an aggressive transformed state, as documented by elevated anchorage-independence and enhanced in vivo oncogenesis in nude mice. This approach resulted in the identification and cloning of both known and a high proportion (>65%) of unknown sequences, including cDNAs displaying elevated expression as a function of progression (progression-elevated gene) and cDNAs displaying suppressed expression as a function of progression (progression-suppressed gene). Sixteen differentially expressed genes, including five unknown progression-elevated genes and six unknown progression-suppressed genes, have been characterized. The RSDD scheme should find wide application for the effective detection and isolation of differentially expressed genes.
Resumo:
We report the use of “mRNA display,” an in vitro selection technique, to identify peptide aptamers to a protein target. mRNA display allows for the preparation of polypeptide libraries with far greater complexity than is possible with phage display. Starting with a library of ≈1013 random peptides, 20 different aptamers to streptavidin were obtained, with dissociation constants as low as 5 nM. These aptamers function without the aid of disulfide bridges or engineered scaffolds, yet possess affinities comparable to those for monoclonal antibody–antigen complexes. The aptamers bind streptavidin with three to four orders of magnitude higher affinity than those isolated previously by phage display from lower complexity libraries of shorter random peptides. Like previously isolated peptides, they contain an HPQ consensus motif. This study shows that, given sufficient length and diversity, high-affinity aptamers can be obtained even from random nonconstrained peptide libraries. By engineering structural constraints into these ultrahigh complexity peptide libraries, it may be possible to produce binding agents with subnanomolar binding constants.
Resumo:
Nitrate reductase (NR) activity increased up to 14-fold in response to treatment of Arabidopsis thaliana seedlings with the cytokinin benzyladenine. NR induction was observed in seedlings germinated directly on cytokinin-containing medium, seedlings transferred to cytokinin medium, and seedlings grown in soil in which cytokinin was applied directly to the leaves. About the same level of induction was seen in both wild-type and Nia2-deletion mutants, indicating that increased NR activity is related to the expression of the minor NR gene, Nia1. The steady-state Nia1 mRNA level was increased severalfold in both wild-type and mutant seedlings after benzyladenine treatment. Transcript levels of the Nia2 gene, which is responsible for 90% of the NR activity in developing wild-type seedlings, did not show any changes upon cytokinin treatment. Nuclear run-on assays demonstrated that Nia1 gene transcription increased dramatically after cytokinin treatment.
Resumo:
We have developed an approach to study changes in gene expression by selective PCR amplification and display of 3' end restriction fragments of double-stranded cDNAs. This method produces highly consistent and reproducible patterns, can detect almost all mRNAs in a sample, and can resolve hidden differences such as bands that differ in their sequence but comigrate on a gel. Bands corresponding to known cDNAs move to predictable positions on the gel, making this a powerful approach to correlate gel patterns with cDNA data bases. Applying this method, we have examined differences in gene expression patterns during T-cell activation. Of a total of 700 bands that were evaluated in this study, as many as 3-4% represented mRNAs that are upregulated, while approximately 2% were down-regulated within 4 hr of activation of Jurkat T cells. These and other results suggest that this approach is suitable for the systematic, expeditious, and nearly exhaustive elucidation of subtle changes in the patterns of gene expression in cells with altered physiologic states.
Resumo:
Elucidating the relevant genomic changes mediating development and evolution of prostate cancer is paramount for effective diagnosis and therapy. A putative dominant-acting nude mouse prostatic carcinoma tumor-inducing gene, PTI-1, has been cloned that is expressed in patient-derived human prostatic carcinomas but not in benign prostatic hypertrophy or normal prostate tissue. PTI-1 was detected by cotransfecting human prostate carcinoma DNA into CREF-Trans 6 cells, inducing tumors in nude mice, and isolating genes displaying increased expression in tumor-derived cells by using differential RNA display (DD). Screening a human prostatic carcinoma (LNCaP) cDNA library with a 214-bp DNA fragment found by DD permitted the cloning of a full-length 2.0-kb PTI-1 cDNA. Sequence analysis indicates that PTI-1 is a gene containing a 630-bp 5' sequence and a 3' sequence homologous to a truncated and mutated form of human elongation factor 1 alpha. In vitro translation demonstrates that the PTI-1 cDNA encodes a predominant approximately 46-kDa protein. Probing Northern blots with a DNA fragment corresponding to the 5' region of PTI-1 identifies multiple PTI-1 transcripts in RNAs from human carcinoma cell lines derived from the prostate, lung, breast, and colon. In contrast, PTI-1 RNA is not detected in human melanoma, neuroblastoma, osteosarcoma, normal cerebellum, or glioblastoma multiforme cell lines. By using a pair of primers recognizing a 280-bp region within the 630-bp 5' PTI-1 sequence, reverse transcription-PCR detects PTI-1 expression in patient-derived prostate carcinomas but not in normal prostate or benign hypertrophic prostate tissue. In contrast, reverse transcription-PCR detects prostate-specific antigen expression in all of the prostate tissues. These results indicate that PTI-1 may be a member of a class of oncogenes that could affect protein translation and contribute to carcinoma development in human prostate and other tissues. The approaches used, rapid expression cloning with the CREF-Trans 6 system and the DD strategy, should prove widely applicable for identifying and cloning additional human oncogenes.
Resumo:
It has previously been shown that mRNA encoding the arginine vasopressin (AVP) precursor is targeted to axons of rat magnocellular neurons of the hypothalamo-neurohypophyseal tract. In the homozygous Brattle-boro rat, which has a G nucleotide deletion in the coding region of the AVP gene, no such targeting is observed although the gene is transcribed. RNase protection and heteroduplex analyses demonstrate that, in heterozygous animals, which express both alleles of the AVP gene, the wild-type but not the mutant transcript is subject to axonal compartmentation. In contrast, wild-type and mutant AVP mRNAs are present in dendrites. These data suggest the existence of different mechanisms for mRNA targeting to the two subcellular compartments. Axonal mRNA localization appears to take place after protein synthesis; the mutant transcript is not available for axonal targeting because it lacks a stop codon preventing its release from ribosomes. Dendritic compartmentation, on the other hand, is likely to precede translation and, thus, would be unable to discriminate between the two mRNAs.
Resumo:
The influence of a synthetic retroviral peptide, CKS-17, on T helper type 1 (Th1)- or Th2-related cytokines was investigated in human blood mononuclear cells. Cells were stimulated with staphylococcal enterotoxin A, anti-CD3 plus anti-CD28 monoclonal antibodies, or lipopolysaccharide to induce cytokine mRNA. mRNA was detected by a reverse transcription-polymerase chain reaction or Northern blot analysis. CKS-17 down-regulated stimulant-induced mRNA accumulation for interferon gamma (IFN-gamma), interleukin (IL)-2, and p40 heavy and p35 light chains of IL-12, a cytokine that mediates development of Th1 response. CKS-17 up-regulated stimulant-induced mRNA accumulation of IL-10 and did not suppress Th2-related cytokine (IL-4, IL-5, IL-6, or IL-13) mRNA expression. A reverse sequence of CKS-17 peptide, used as a control, showed no such action. Anti-human IL-10 monoclonal antibody blocked ability of CKS-17 to inhibit mRNA accumulation for IFN-gamma but not the CKS-17 suppressive activity of IL-12 p40 heavy chain mRNA. Thus, CKS-17-mediated suppression of IFN-gamma mRNA expression is dependent upon augmentation of IL-10 production by CKS-17. This conserved component of several retroviral envelope proteins, CKS-17, may act as an immunomodulatory epitope responsible for cytokine dysregulation that leads to suppression of cellular immunity.
Resumo:
Background Several lines of evidence suggests that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but a complete mapping the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors which may be involved in one subtype may not be in others. We investigated the possibility that this network could be mapped using microarray technologies and modern bioinformatics methods on a dataset from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls, Methodology/Principal Findings We have used two different analytical methodologies: a differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that seem to be statistically overrepresented in genes which are either differentially expressed (or differentially co-expressed) in cases and controls (e.g. V$KROX_Q6, p-value < 3.31E-6; V$CREBP1_Q2, p-value < 9.93E-6, V$YY1_02, p-value < 1.65E-5). Conclusions/significance: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. Analysing the published literature we have found that these transcription factors are involved in the early T-lymphocyte specification and commitment as well as in oligodendrocytes dedifferentiation and development. The most significant transcription factors motifs were for the Early Growth response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families.
Resumo:
The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver:brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction.
Resumo:
Background Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Results Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3′ untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. Conclusions This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity.
Resumo:
Heat shock promoters of mycobacteria are strong promoters that become rapidly upregulated during macrophage infection and thus serve as valuable candidates for expressing foreign antigens in recombinant BCG vaccine. In the present study, a new heat shock promoter controlling the expression of the groESL1 operon was identified and characterized. Mycobacterium tuberculosis groESL1 operon codes for the immunodominant 10 kDa (Rv3418c, GroES/Cpn10/Hsp10) and 60 kDa (Rv3417c, GroEL1/Cpn60.1/Hsp60) heat shock proteins. The basal promoter region was 115 bp, while enhanced activity was seen only with a 277-bp fragment. No promoter element was seen in the groES-groEL1 intergenic region. This operon codes for a bicistronic mRNA transcript as determined by reverse transcriptase-PCR and Northern blot analysis. Primer extension analysis identified two transcriptional start sites (TSSs) TSS1 (-236) and TSS2 (-171), out of which one (TSS2) was heat inducible. The groE promoter was more active than the groEL2 promoter in Mycobacterium smegmatis. Further, it was found to be differentially regulated under stress conditions, while the groEL2 promoter was constitutive.
Resumo:
A role for oestrogen in regulating fluid reabsorption in the monkey epididymis was recently demonstrated. Here, these Studies are extended to identify potential oestrogen-regulated proteins in the cauda region of monkey epididymis treated with vehicle and oestrogen receptor antagonist (ICI 182780). Two-dimensional electrophoretic analysis was used to identify the proteins. The results indicated down-regulation of WNT4 in the ICI-182780-treated monkey cauda. In addition. the Wnt4f mRNA concentration was also reduced in the caput regions of ICI-182780-treated rats and oestrogen receptor knockout mice. WNT4 is a key regulator of gonadal differentiation in humans and mice and plays a pivotal role in early mouse embryogenesis. The results of the present Study establish the presence of WNT4 in the monkey epididymis and its regulation by oestrogen, and Suggest a role for WNT4 in maintaining epididymal homeostasis.
Differential expression profiling of components associated with exoskeletal hardening in crustaceans
Resumo:
Background: Exoskeletal hardening in crustaceans can be attributed to mineralization and sclerotization of the organic matrix. Glycoproteins have been implicated in the calcification process of many matrices. Sclerotization, on the other hand, is catalysed by phenoloxidases, which also play a role in melanization and the immunological response in arthropods. Custom cDNA microarrays from Portunus pelagicus were used to identify genes possibly associated with the activation pathways involved in these processes. Results: Two genes potentially involved in the recognition of glycosylation, the C-type lectin receptor and the mannose-binding protein, were found to display molt cycle-related differential expression profiles. C-type lectin receptor up-regulation was found to coincide with periods associated with new uncalcified cuticle formation, while the up-regulation of mannose-binding protein occurred only in the post-molt stage, during which calcification takes place, implicating both in the regulation of calcification. Genes presumed to be involved in the phenoloxidase activation pathway that facilitates sclerotization also displayed molt cycle-related differential expression profiles. Members of the serine protease superfamily, trypsin-like and chymotrypsin-like, were up-regulated in the intermolt stage when compared to post-molt, while trypsin-like was also up-regulated in pre-molt compared to ecdysis. Additionally, up-regulation in pre- and intermolt stages was observed by transcripts encoding other phenoloxidase activators including the putative antibacterial protein carcinin-like, and clotting protein precursor-like. Furthermore, hemocyanin, itself with phenoloxidase activity, displayed an identical expression pattern to that of the phenoloxidase activators, i.e. up-regulation in pre- and intermolt. Conclusion: Cuticle hardening in crustaceans is a complex process that is precisely timed to occur in the post-molt stage of the molt cycle. We have identified differential expression patterns of several genes that are believed to be involved in biomineralization and sclerotization and propose possible regulatory mechanisms for these processes based on their expression profiles, such as the potential involvement of C-type lectin receptors and mannose binding protein in the regulation of calcification.