934 resultados para método de correção por equação matemática


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensos estudos realizados nas últimas décadas sobre a propagação de ondas ultrassônicas em sólidos levaram ao desenvolvimento de técnicas não destrutivas para a avaliação da segurança e integridade de estruturas e componentes industriais. O interesse na aplicação de técnicas ultrassônicas para medição de tensões aplicadas e residuais decorre da mudança mensurável da velocidade das ondas ultrassônicas na presença de um campo de tensões, fenômeno conhecido como efeito acustoelástico. Uma teoria de acustoelasticidade fornece um meio atrativo e não destrutivo de medir a tensão média ao longo do caminho percorrido pela onda. O estudo da propagação das ondas ultrassônicas em meios homogêneos anisotrópicos sob tensão conduz a um problema não linear de autovalores dado pela equação de Christoffel generalizada. A característica não linear deste problema decorre da interdependência entre as constantes elásticas efetivas do material e as tensões atuantes. A medição experimental de tensões por técnicas ultrassônicas é um problema inverso da acustoelasticidade. Esta dissertação apresenta a implementação de um algoritmo numérico, baseado no método proposto por Degtyar e Rokhlin, para solução do problema inverso da acustoelasticidade em sólidos ortotrópicos sujeitos a um estado plano de tensões. A solução da equação de Christoffel generalizada apresenta dificuldades de natureza numérica e prática. A estabilidade e a precisão do algoritmo desenvolvido, bem como a influência das incertezas na medição experimental das velocidades das ondas ultrassônicas, foram então investigadas. Dados sintéticos para as velocidades das ondas ultrassônicas de incidência oblíqua em uma placa sujeita a um estado plano de tensões foram gerados pela solução direta da equação de Christoffel generalizada para ilustrar a aplicação do algoritmo desenvolvido. O objetivo maior desta dissertação é a disponibilização de uma nova ferramenta de cálculo para suporte às atividades experimentais de medição de tensões por ultrassom no país.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Um Estudo para a solução numérica do modelo de difusão com retenção, proposta por Bevilacqua et al. (2011), é apresentado, bem como uma formulação implícita para o problema inverso para a estimativa dos parâmetros envolvidos na formulação matemática do modelo. Através de um estudo minucioso da análise de sensibilidade e do cálculo do coeficiente de correlação de Pearson, são identificadas as chances de se obter sucesso na solução do problema inverso através do método determinístico de Levenberg-Marquardt e dos métodos estocásticos Algoritmo de Colisão de Partículas (Particle Collision Algorithm - PCA) e Evolução Diferencial (Differential Evolution - DE). São apresentados os resultados obtidos através destes três métodos de otimização para três casos de conjunto de parâmetros. Foi observada uma forte correlação entre dois destes três parâmetros, o que dificultou a estimativa simultânea dos mesmos. Porém, foi obtido sucesso nas estimativas individuais de cada parâmetro. Foram obtidos bons resultados para os fatores que multiplicam os termos diferenciais da equação que modela o fenômeno de difusão com retenção.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho apresentamos as etapas para a utilização do método da Programação Dinâmica, ou Princípio de Otimização de Bellman, para aplicações de controle ótimo. Investigamos a noção de funções de controle de Lyapunov (FCL) e sua relação com a estabilidade de sistemas autônomos com controle. Uma função de controle de Lyapunov deverá satisfazer a equação de Hamilton-Jacobi-Bellman (H-J-B). Usando esse fato, se uma função de controle de Lyapunov é conhecida, será então possível determinar a lei de realimentação ótima; isto é, a lei de controle que torna o sistema globalmente assintóticamente controlável a um estado de equilíbrio. Como aplicação, apresentamos uma modelagem matemática adequada a um problema de controle ótimo de certos sistemas biológicos. Este trabalho conta também com um breve histórico sobre o desenvolvimento da Teoria de Controle de forma a ilustrar a importância, o progresso e a aplicação das técnicas de controle em diferentes áreas ao longo do tempo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nesta dissertação, são apresentados os seguintes modelos matemáticos de transporte de nêutrons: a equação linearizada de Boltzmann e a equação da difusão de nêutrons monoenergéticos em meios não-multiplicativos. Com o objetivo de determinar o período fluxo escalar de nêutrons, é descrito um método espectronodal que gera soluções numéricas para o problema de difusão em geometria planar de fonte fixa, que são livres de erros de truncamento espacial, e que conjugado com uma técnica de reconstrução espacial intranodal gera o perfil detalhado da solução. A fim de obter o valor aproximado do fluxo angular de nêutrons em um determinado ponto do domínio e em uma determinada direção de migração, descreve-se também um método de reconstrução angular baseado na solução analítica da equação unidimensional de transporte de nêutrons monoenergéticos com espalhamento linearmente anisotrópico com aproximação sintética de difusão nos termos de fonte por espalhamento. O código computacional desenvolvido nesta dissertação foi implementado na plataforma livre Scilab, e para ilustrar a eficiência do código criado,resultados numéricos obtidos para três problemas-modelos são apresentados

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho que envolve matemática aplicada e processamento paralelo: seu objetivo é avaliar uma estratégia de implementação em paralelo para algoritmos de diferenças finitas que aproximam a solução de equações diferenciais de evolução. A alternativa proposta é a substituição dos produtos matriz-vetor efetuados sequencialmente por multiplicações matriz-matriz aceleradas pelo método de Strassen em paralelo. O trabalho desenvolve testes visando verificar o ganho computacional relacionado a essa estratégia de paralelização, pois as aplicacações computacionais, que empregam a estratégia sequencial, possuem como característica o longo período de computação causado pelo grande volume de cálculo. Inclusive como alternativa, nós usamos o algoritmo em paralelo convencional para solução de algoritmos explícitos para solução de equações diferenciais parciais evolutivas no tempo. Portanto, de acordo com os resultados obtidos, nós observamos as características de cada estratégia em paralelo, tendo como principal objetivo diminuir o esforço computacional despendido.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uma dedução dos critérios de multicriticalidade para o cálculo de pontos críticos de qualquer ordem representa a formalização de ideias utilizadas para calcular pontos críticos e tricríticos e ainda amplia tais ideias. De posse desta dedução pode-se compreender os critérios de tricriticalidade e, com isso, através de uma abordagem via problema de otimização global pode-se fazer o cálculo de pontos tricríticos utilizando um método numérico adequado de otimização global. Para evitar um excesso de custo computacional com rotinas numéricas utilizou-se aproximações na forma de diferenças finitas dos termos que compõem a função objetivo. Para simular a relação P v - T optou-se pela equação de estado cúbica de Peng-Robinson e pela regra clássica de fluidos de van der Vaals, para modelagem do problema também se calculou os tensores de ordem 2, 3, 4 e 5 da função do teste de estabilidade. Os resultados obtidos foram comparados com dados experimentais e por resultados obtidos com outros autores que utilizaram métodos numéricos, equação de estado ou abordagem diferente das utilizadas neste trabalho.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água ou gás no reservatório a fim de manter a pressão necessária para sua extração. Para que o investimento seja viável, os gastos com a extração precisam ser menores do que o retorno financeiro obtido com a produção de petróleo. Objetivando-se estudar possíveis cenários para o processo de exploração, costuma-se utilizar simulações dos processos de extração. As equações que modelam esse processo de recuperação são de caráter hiperbólico e não lineares, as quais podem ser interpretadas como Leis de Conservação, cujas soluções são complexas por suas naturezas descontínuas. Essas descontinuidades ou saltos são conhecidas como ondas de choque. Neste trabalho foi abordada uma análise matemática para os fenômenos oriundos de leis de conservação, para em seguida utilizá-la no entendimento do referido problema. Foram estudadas soluções fracas que, fisicamente, podem ser interpretadas como ondas de choque ou rarefação, então, para que fossem distinguidas as fisicamente admissíveis, foi considerado o princípio de entropia, nas suas diversas formas. As simulações foram realizadas nos âmbitos dos escoamentos bifásicos e trifásicos, em que os fluidos são imiscíveis e os efeitos gravitacionais e difusivos, devido à pressão capilar, foram desprezados. Inicialmente, foi feito um estudo comparativo de resoluções numéricas na captura de ondas de choque em escoamento bifásico água-óleo. Neste estudo destacam-se o método Composto LWLF-k, o esquema NonStandard e a introdução da nova função de renormalização para o esquema NonStandard, onde obteve resultados satisfatórios, principalmente em regiões onde a viscosidade do óleo é muito maior do que a viscosidade da água. No escoamento bidimensional, um novo método é proposto, partindo de uma generalização do esquema NonStandard unidimensional. Por fim, é feita uma adaptação dos métodos LWLF-4 e NonStandard para a simulação em escoamentos trifásicos em domínios unidimensional. O esquema NonStandard foi considerado mais eficiente nos problemas abordados, uma vez que sua versão bidimensional mostrou-se satisfatória na captura de ondas de choque em escoamentos bifásicos em meios porosos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Redes de trocadores de calor são bastante utilizadas na indústria química para promover a integração energética do processo, recuperando calor de correntes quentes para aquecer correntes frias. Estas redes estão sujeitas à deposição, o que causa um aumento na resistência à transferência de calor, prejudicando-a. Uma das principais formas de diminuir o prejuízo causado por este fenômeno é a realização periódica de limpezas nos trocadores de calor. O presente trabalho tem como objetivo desenvolver um novo método para encontrar a programação ótima das limpezas em uma rede de trocadores de calor. O método desenvolvido utiliza o conceito de horizonte deslizante associado a um problema de programação linear inteira mista (MILP). Este problema MILP é capaz de definir o conjunto ótimo de trocadores de calor a serem limpos em um determinado instante de tempo (primeiro instante do horizonte deslizante), levando em conta sua influência nos instantes futuros (restante do horizonte deslizante). O problema MILP utiliza restrições referentes aos balanços de energia, equações de trocadores de calor e número máximo de limpezas simultâneas, com o objetivo de minimizar o consumo de energia da planta. A programação ótima das limpezas é composta pela combinação dos resultados obtidos em cada um dos instantes de tempo.O desempenho desta abordagem foi analisado através de sua aplicação em diversos exemplos típicos apresentados na literatura, inclusive um exemplo de grande porte de uma refinaria brasileira. Os resultados mostraram que a abordagem aplicada foi capaz de prover ganhos semelhantes e, algumas vezes, superiores aos da literatura, indicando que o método desenvolvido é capaz de fornecer bons resultados com um baixo esforço computacional

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho, a partição iônica e o potencial de membrana em um eritrócito são analisados via equação de Poisson-Boltzmann modificada, considerando as interações não eletrostáticas presentes entre os íons e macromoléculas, assim como, o potencial β. Este potencial é atribuído à diferença de potencial químico de referência entre os meios intracelular e extracelular e ao transporte ativo de íons. O potencial de Gibbs-Donnan via equação de Poisson-Boltzmann na presença de carga fixa em um sistema contendo uma membrana semipermeável também é estudado. O método de aproximação paraboloide em elementos finitos em um sistema estacionário e unidimensionalé aplicado para resolver a equação de Poisson-Boltzmann em coordenadas cartesianas e esféricas. O parâmetro de dispersão relativo às interações não eletrostáticas écalculado via teoria de Lifshitz. Os resultados em relação ao potencial de Gibbs-Donnan mostram-se adequados, podendo ser calculado pela equação de Poisson-Boltzmann. No sistema contendo um eritrócito, quando o potencial β é considerado igual a zero, não se verifica a diferença iônica observada experimentalmente entre os meios intracelular e extracelular. Dessa forma, os potenciais não eletrostáticos calculados via teoria de Lifshitz têm apenas uma pequena influência no que se refere à alta concentração de íon K+ no meio intracelular em relação ao íon Na+

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As simulações computacionais tem sido amplamente empregadas no estudo do escoamento darciano e não-darciano em meios porosos consolidados e não-consolidados. Neste trabalho, através de uma nova formulação para a equação de Forchheimer, foram identificadas duas novas propriedades denominados fator de comportamento do fluido, que atua paralelamente a permeabilidade, e permeabilidade equivalente global, resultado da relação anterior. Este comportamento foi estudado e validado através da implementação de um aparato experimental e um código computacional baseado no modelo de regressão-linear que, além disso, demonstrou que o escoamento, ainda que em regime não darciano, comporta-se linearmente como a equação de Darcy, ainda que o coeficiente angular desta diminuiu de acordo com a faixa do número de Reynolds atingida, sendo esta dependente do tipo de leito empregado. Ainda neste trabalho, foi implementado o método de otimização R2W para estimar os parâmetros da equação de Kozeny-Carman a partir de dados experimentais obtidos por Dias et al, a fim de simular o escoamento darciano em meios porosos. Por fim, foi alcançada excelente concordância entre os dados simulados pelo método R2W / equação de Kozeny-Carman e os dados reais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vários estudos têm fornecido respostas positivas com relação à produtividade do fitoplâncton e à produção de peixes, após a aplicação de calcário nos viveiros com problemas de acidez dos sedimentos do fundo. A calagem dos sedimentos do fundo dos viveiros de aqüicultura tem o objetivo de neutralizar a acidez da camada superficial desses sedimentos, e aumentar a concentração da alcalinidade total e da dureza total da água (THOMASTON & ZELLER, 1961). Em geral, a calagem é feita logo após a despesca (quando os viveiros são drenados, possibilitando a secagem do fundo para aplicação do calcário), e antes do próximo ciclo de cultivo (BOYD & TUCKER, 1998). Freqüentemente, o calcário é misturado com os sedimentos do fundo dos viveiros com um arado. Outro método de calagem é a aplicação de calcário diretamente sobre a superfície da água com o auxílio de um barco, como é feito no sul dos EUA, para a produção de "catfish" (Ictalurus punctaturs) situação em que os viveiros não são drenados por vários anos (BOYD, 1982). Entretanto, não só no Brasil, como nos EUA não existem estudos comparativos sobre a efetividade dos diferentes métodos de calagem em uso pelos aqüicultores, apesar do uso generalizado dessa técnica. Com o objetivo de atender a essa demanda, este trabalho foi desenvolvido em uma piscicultura comercial localizada em Itupeva, SP, para comparar os três métodos de aplicação de calcário agrícola nos viveiros de produção de alevinos de tilápia do Nilo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A região de Jales, localizada no noroeste de São Paulo, é uma importante área produtora de uvas de mesa do Estado, onde predominam pequenas propriedades com mão-de-obra familiar. Em todos os vinhedos da região são empregados sistemas de irrigação, para suprir a deficiência hídrica que ocorre durante o ciclo produtivo da cultura. Para um manejo adequado da irrigação, são necessárias informações sobre a necessidade hídrica da cultura. A evapotranspiração de referência (ETo) é um parâmetro fundamental para a determinação dessa necessidade, sendo desejável que se tenha um método que estime a ETo com boa precisão e a partir de dados meteorológicos fáceis de serem obtidos (VILLA NOVA; PEREIRA, 2006). O método de Penman-Monteith é considerado, atualmente, como padrão para a estimativa de ETo. Para seu uso, entretanto, são necessárias variáveis meteorológicas nem sempre disponíveis, principalmente aos pequenos produtores. Por essa razão, métodos que empregam um menor número de variáveis são também utilizados para estimar a ETo. No presente trabalho foram calculados valores diários de ETo pelo método de Hargreaves original; e por um novo método, em que se emprega a equação de Bristow-Campbell para a estimativa de Rs. Esses valores foram comparados aos obtidos pelo método padrão de Penman-Monteith, nas condições do noroeste paulista.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este trabajo se expone una visión actualizada del Análisis Didáctico como instrumento metodológico específico para la investigación en Educación Matemática. La potencialidad práctica del método se ilustra con la descripción de su aplicación en un estudio desarrollado recientemente sobre la comprensión del conocimiento matemático (Gallardo, 2004). En base a esta experiencia se destacan además las principales limitaciones e interrogantes metodológicos generados por el Análisis Didáctico junto con algunas posibilidades de mejora futura.