907 resultados para lung disease
Resumo:
Lung transplantation is a widely accepted therapeutic option for end stage lung disease. Clinical outcome is yet challenged by primary graft failure responsible for the majority of the early mortality, by chronic allograft dysfunction and chronic rejection accounting for more than 30% of deaths after the third postoperative year. Pulmonary surfactant proteins (SP) A, B, C and D are one of the first host defense mechanisms the lung can mount. SP-A in particular, produced by the type II pneumocytes, is active in the innate and adaptive immune system being an opsonin, but also regulating the macrophage and lymphocyte response. The main hypothesis for this project is that pulmonary surfactant protein A polymorphism may determine the early and long term lung allograft survival. Of note SP-A biologic activity seems to be genetically determined and SP-A polymorphisms have been associated to various lung disease. The two SP-A genes SP-A1 and SP-A2 have several polymorphisms within the coding region, SP-A1 (6A, 6A2-20), and SP-A2(1A, 1A0-13). The SP-A gene expression is regulated by cAMP, TTF-1 and glucocorticoids. In vitro studies have indicated that SP-A1 and SP-A2 gene variants may have a variable response to glucocorticoids. We proposed to determine if SP-A gene polymorphism predicts primary graft dysfunction and/or chronic lung allograft dysfunction and if SP-A may serve as a biomarker of lung allograft dysfunction. We also proposed to study the interaction between immunosuppressive drugs and SP-A expression and determine whether this is dependent on SP-A polymorphisms. This study will generate novel information improving our understanding of lung allograft dysfunction. It is conceivable that the information will stimulate the interest for a multi centre study to investigate if SP-A polymorphism may be integrated in the donor lung selection criteria and/or to implement post transplant tailored immunosuppression.
Resumo:
Infants with chronic lung disease (CLD) have a capacity to maintain functional lung volume despite alterations to their lung mechanics. We hypothesize that they achieve this by altering breathing patterns and dynamic elevation of lung volume, leading to differences in the relationship between respiratory muscle activity, flow and lung volume. Lung function and transcutaneous electromyography of the respiratory muscles (rEMG) were measured in 20 infants with CLD and in 39 healthy age-matched controls during quiet sleep. We compared coefficient of variations (CVs) of rEMG and the temporal relationship of rEMG variables, to flow and lung volume [functional residual capacity (FRC)] between these groups. The time between the start of inspiratory muscle activity and the resulting flow (tria)--in relation to respiratory cycle time--was significantly longer in infants with CLD. Although FRC had similar associations with tria and postinspiratory activity (corrected for respiratory cycle time), the CV of the diaphragmatic rEMG was lower in CLD infants (22.6 versus 31.0%, p = 0.030). The temporal relationship of rEMG to flow and FRC and the loss of adaptive variability provide additional information on coping mechanisms in infants with CLD. This technique could be used for noninvasive bedside monitoring of CLD.
Resumo:
The impact of abnormal spirometric findings on risk for incident heart failure among older adults without clinically apparent lung disease is not well elucidated.
Resumo:
Multiple breath washout (MBW) measurements have recently been shown to be sensitive for detection of early cystic fibrosis (CF) lung disease, with the lung clearance index (LCI) being the most common measure for ventilation inhomogeneity. The aim of this observational study was to describe the longitudinal course of LCI from time of clinical diagnosis during infancy to school-age in eleven children with CF. Elevated LCI during infancy was present in seven subjects, especially in those with later clinical diagnosis. Tracking of LCI at follow-up was evident only in the four most severe cases. We provide the first longitudinal data describing the long-term course of LCI in a small group of infants with CF. Our findings support the clinical usefulness of MBW measurements to detect and monitor early lung disease in children with CF already present shortly after clinical diagnosis.
Resumo:
OBJECTIVES: Residual airspace following thoracic resections is a common clinical problem. Persistent air leak, prolonged drainage time, and reduced hemostasis extend hospital stay and morbidity. We report a trial of pharmacologic-induced diaphragmatic paralysis through continuous paraphrenic injection of lidocaine to reduced residual airspace. The objectives were confirmation of diaphragmatic paralysis and possible procedure related complications. METHODS: Six eligible patients undergoing resectional surgery (lobectomy or bilobectomy) were included. Inclusion criteria consisted of: postoperative predicted FEV1 greater than 1300 ml, right-sided resection, absence of parenchymal lung disease, no class III antiarrhythmic therapy, absence of hypersensitivity reactions to lidocaine, no signs of infection, and informed consent. Upon completion of resection an epidural catheter was attached in the periphrenic tissue on the proximal pericardial surface, externalized through a separate parasternal incision, and connected to a perfusing system injecting lidocaine 1% at a rate of 3 ml/h (30 mg/h). Postoperative ICU surveillance for 24h and daily measurement of vital signs, drainage output, and bedside spirometry were performed. Within 48 h fluoroscopic confirmation of diaphragmatic paralysis was obtained. The catheter removal coincided with the chest tube removal when no procedural related complications occurred. RESULTS: None of the patients reported respiratory impairment. Diaphragmatic paralysis was documented in all patients. Upon removal of catheter or discontinuation of lidocaine prompt return of diaphragmatic motility was noticed. Two patients showed postoperative hemodynamic irrelevant atrial fibrillation. CONCLUSION: Postoperative paraphrenic catheter administration of lidocaine to ensure reversible diaphragmatic paralysis is safe and reproducible. Further studies have to assess a benefit in terms of reduction in morbidity, drainage time, and hospital stay, and determine the patients who will profit.
Resumo:
Lung cancer is the leading cause of cancer death worldwide. The overall 5-year survival after therapy is about 16% and there is a clear need for better treatment options, such as therapies targeting specific molecular structures. G-protein coupled receptors (GPCRs), as the largest family of cell surface receptors, represent an important group of potential targets for diagnostics and therapy. We therefore used laser capture microdissection and GPCR-focused Affymetrix microarrays to examine the expression of 929 GPCR transcripts in tissue samples of 10 patients with squamous cell carcinoma and 7 with adenocarcinoma in order to identify novel targets in non-small cell lung carcinoma (NSCLC). The relative gene expression levels were calculated in tumour samples compared to samples of the neighbouring alveolar tissue in every patient. Based on this unique study design, we identified 5 significantly overexpressed GPCRs in squamous cell carcinoma, in the following decreasing order of expression: GPR87 > CMKOR1 > FZD10 > LGR4 > P2RY11. All are non-olfactory and GRAFS (glutamate, rhodopsin, adhesion, frizzled/taste2, secretin family) classified. GPR87, LGR4 and CMKOR1 are orphan receptors. GPR87 stands out as a candidate for further target validation due to its marked overexpression and correlation on a mutation-based level to squamous cell carcinoma.
Resumo:
The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration.
Resumo:
Glucocorticoids are often applied in neonatology and perinatology to fight the problems of respiratory distress and chronic lung disease. There are, however, many controversies regarding the adverse side effects and long-term clinical benefits of this therapeutic approach. In rats, glucocorticoids are known to seriously impair the formation of alveoli when applied during the first two postnatal weeks even at very low dosage. The current study investigates short-term and long-term glucocorticoid effects on the rat lung by means of morphologic and morphometric observations at light and electron microscopic levels. Application of a high-dosage protocol for only few days resulted in a marked acceleration of lung development with a precocious microvascular maturation resulting in single capillary network septa in the first 4 postnatal days. By postnatal d 10, the lung morphologic phenotype showed a step back in the maturational state, with an increased number of septa with double capillary layer, followed by an exceptional second round of the alveolarization process. As a result of this process, there was an almost complete recovery in the parenchymal lung structure by postnatal d 36, and by d 60, there were virtually no qualitative or quantitative differences between experimental and control rats. These findings indicate that both dosage and duration of glucocorticoid therapy in the early postnatal period are very critical with respect to lung development and maturation and that a careful therapeutic strategy can minimize late sequelae of treatment.
Resumo:
The new Swiss Chronic Obstructive Pulmonary Disease (COPD) Guidelines are based on a previous version, which was published 10 years ago. The Swiss Respiratory Society felt the need to update the previous document due to new knowledge and novel therapeutic developments about this prevalent and important disease. The recommendations and statements are based on the available literature, on other national guidelines and, in particular, on the GOLD (Global Initiative for Chronic Obstructive Lung Disease) report. Our aim is to advise pulmonary physicians, general practitioners and other health care workers on the early detection and diagnosis, prevention, best symptomatic control, and avoidance of COPD as well as its complications and deterioration.
Resumo:
While glucocorticoid (GC) administration appears to be beneficial during the acute phase of treatment of neonates at risk of developing chronic lung disease, it is still not clear whether steroid application has an adverse long-term effect on the lung maturation. Thus, the goal of the present work was to analyze GC effects on the pulmonary structure in a rat model where dosage and timing of drug administration were adapted to the therapeutic situation in human neonatology. The animals received daily a maximum of 0.1 mg dexamethasone phosphate per kilogram body weight during the first 4 postnatal days. Investigations were performed at the light microscopic level by means of a digital image analysis system. While there were no differences in the lung architecture between experimental animals and controls on day 4, the earliest time point of observation, we found a widening of airspaces with a concomitant decrease in the alveolar surface area density, representing a loss of parenchymal complexity, on days 10 and 21 in treated rats. On days 36 and 60, however, no alterations in the pulmonary parenchyma could be detected in experimental animals. We conclude from these findings that the GC-induced initial inhibition of development (days 10 and 21) was completely reversed, so that a normal parenchymal architecture and also a normal alveolar surface area density were found in adult rats (days 36 and 60). From the results obtained using the regimen of GC administration described, mimicking more closely the steroid treatment in human neonatology, we conclude that the observed short-term adverse effects on lung development can be fully compensated until adult age.
Resumo:
BACKGROUND: Risk factors and outcomes of bronchial stricture after lung transplantation are not well defined. An association between acute rejection and development of stricture has been suggested in small case series. We evaluated this relationship using a large national registry. METHODS: All lung transplantations between April 1994 and December 2008 per the United Network for Organ Sharing (UNOS) database were analyzed. Generalized linear models were used to determine the association between early rejection and development of stricture after adjusting for potential confounders. The association of stricture with postoperative lung function and overall survival was also evaluated. RESULTS: Nine thousand three hundred thirty-five patients were included for analysis. The incidence of stricture was 11.5% (1,077/9,335), with no significant change in incidence during the study period (P=0.13). Early rejection was associated with a significantly greater incidence of stricture (adjusted odds ratio [AOR], 1.40; 95% confidence interval [CI], 1.22-1.61; p<0.0001). Male sex, restrictive lung disease, and pretransplantation requirement for hospitalization were also associated with stricture. Those who experienced stricture had a lower postoperative peak percent predicted forced expiratory volume at 1 second (FEV1) (median 74% versus 86% for bilateral transplants only; p<0.0001), shorter unadjusted survival (median 6.09 versus 6.82 years; p<0.001) and increased risk of death after adjusting for potential confounders (adjusted hazard ratio 1.13; 95% CI, 1.03-1.23; p=0.007). CONCLUSIONS: Early rejection is associated with an increased incidence of stricture. Recipients with stricture demonstrate worse postoperative lung function and survival. Prospective studies may be warranted to further assess causality and the potential for coordinated rejection and stricture surveillance strategies to improve postoperative outcomes.
Resumo:
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. METHODS IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. RESULTS iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and alpha-smooth muscle actin (alpha-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. CONCLUSION iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis.
Resumo:
BACKGROUND Existing prediction models for mortality in chronic obstructive pulmonary disease (COPD) patients have not yet been validated in primary care, which is where the majority of patients receive care. OBJECTIVES Our aim was to validate the ADO (age, dyspnoea, airflow obstruction) index as a predictor of 2-year mortality in 2 general practice-based COPD cohorts. METHODS Six hundred and forty-six patients with COPD with GOLD (Global Initiative for Chronic Obstructive Lung Disease) stages I-IV were enrolled by their general practitioners and followed for 2 years. The ADO regression equation was used to predict a 2-year risk of all-cause mortality in each patient and this risk was compared with the observed 2-year mortality. Discrimination and calibration were assessed as well as the strength of association between the 15-point ADO score and the observed 2-year all-cause mortality. RESULTS Fifty-two (8.1%) patients died during the 2-year follow-up period. Discrimination with the ADO index was excellent with an area under the curve of 0.78 [95% confidence interval (CI) 0.71-0.84]. Overall, the predicted and observed risks matched well and visual inspection revealed no important differences between them across 10 risk classes (p = 0.68). The odds ratio for death per point increase according to the ADO index was 1.50 (95% CI 1.31-1.71). CONCLUSIONS The ADO index showed excellent prediction properties in an out-of-population validation carried out in COPD patients from primary care settings.
Resumo:
BACKGROUND Cystic fibrosis (CF) lung disease starts in the first months of life often before the onset of clinical symptoms. Multiple breath washout (MBW) detects abnormal lung function in infants and young children in the laboratory setting. OBJECTIVE The aim of this study was to determine the feasibility of MBW in 0- to 4-year-old children with CF and non-CF controls in the clinical setting. METHODS Fourteen children with CF (mean age 1.3 ± 1.0 years) and 26 age-matched non-CF controls were sedated with chloral hydrate and MBW was performed with sulfur hexafluoride. RESULTS MBW measurements were successful in 27 of 40 children (67.5%). The mean lung clearance index (LCI) was significantly higher in CF patients compared to non-CF controls (p = 0.006). Further, the frequency of elevated LCI (z-score >1.96) was significantly increased in CF patients compared to controls (p = 0.0003). CONCLUSIONS We conclude that MBW is feasible and sensitive to detect abnormal lung function in infants and young children with CF in the clinical setting.
Resumo:
The association between increased DNA-methyltransferase (DNA-MTase) activity and tumor development suggest a fundamental role for this enzyme in the initiation and progression of cancer. A true functional role for DNA-MTase in the neoplastic process would be further substantiated if the target cells affected by the initiating carcinogen exhibit changes in enzyme activity. This hypothesis was addressed by examining DNA-MTase activity in alveolar type II (target) and Clara (nontarget) cells from A/J and C3H mice that exhibit high and low susceptibility, respectively, for lung tumor formation. Increased DNA-MTase activity was found only in the target alveolar type II cells of the susceptible A/J mouse and caused a marked increase in overall DNA methylation in these cells. Both DNA-MTase and DNA methylation changes were detected 7 days after carcinogen exposure and, thus, were early events in neoplastic evolution. Increased gene expression was also detected by RNA in situ hybridization in hypertrophic alveolar type II cells of carcinogen-treated A/J mice, indicating that elevated levels of expression may be a biomarker for premalignancy. Enzyme activity increased incrementally during lung cancer progression and coincided with increased expression of the DNA-MTase activity are strongly associated with neoplastic development and constitute a key step in carcinogenesis. The detection of premalignant lung disease through increased DNA-MTase expression and the possibility of blocking the deleterious effects of this change with specific inhibitors will offer new intervention strategies for lung cancer.