920 resultados para location-dependent data query
Resumo:
It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features
Resumo:
Multiple regression analysis is a statistical technique which allows to predict a dependent variable from m ore than one independent variable and also to determine influential independent variables. Using experimental data, in this study the multiple regression analysis is applied to predict the room mean velocity and determine the most influencing parameters on the velocity. More than 120 experiments for four different heat source locations were carried out in a test chamber with a high level wall mounted air supply terminal at air change rates 3-6 ach. The influence of the environmental parameters such as supply air momentum, room heat load, Archimedes number and local temperature ratio, were examined by two methods: a simple regression analysis incorporated into scatter matrix plots and multiple stepwise regression analysis. It is concluded that, when a heat source is located along the jet centre line, the supply momentum mainly influences the room mean velocity regardless of the plume strength. However, when the heat source is located outside the jet region, the local temperature ratio (the inverse of the local heat removal effectiveness) is a major influencing parameter.
Resumo:
The background error covariance matrix, B, is often used in variational data assimilation for numerical weather prediction as a static and hence poor approximation to the fully dynamic forecast error covariance matrix, Pf. In this paper the concept of an Ensemble Reduced Rank Kalman Filter (EnRRKF) is outlined. In the EnRRKF the forecast error statistics in a subspace defined by an ensemble of states forecast by the dynamic model are found. These statistics are merged in a formal way with the static statistics, which apply in the remainder of the space. The combined statistics may then be used in a variational data assimilation setting. It is hoped that the nonlinear error growth of small-scale weather systems will be accurately captured by the EnRRKF, to produce accurate analyses and ultimately improved forecasts of extreme events.
Resumo:
A new tropopause definition, based on a flow-dependent blending of the traditional thermal tropopause with one based on potential vorticity, has been developed. The benefits of such a blending algorithm are most apparent in regions with synoptic scale fluctuations between tropical and extratropical airmasses. The properties of the local airmass determine the relative contributions to the location of the blended tropopause, rather than this being determined by a specified function of latitude. Global climatologies of tropopause height, temperature, potential temperature and zonal wind, based on European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA) ERA-Interim data, are presented for the period 1989-2007. Features of the seasonal-mean tropopause are discussed on a global scale, alongside a focus on selected monthly climatologies for the two high latitude regions and the tropical belt. The height differences between climatologies based on ERA-Interim and ERA-40 data are also presented. Key spatial and temporal features seen in earlier climatologies, based mainly on the World Meteorological Organization thermal tropopause definition, are reproduced with the new definition. Tropopause temperatures are consistent with those from earlier climatologies, despite some differences in height in the extratropics.
Resumo:
Various studies investigating the future impacts of integrating high levels of renewable energy make use of historical meteorological (met) station data to produce estimates of future generation. Hourly means of 10m horizontal wind are extrapolated to a standard turbine hub height using the wind profile power or log law and used to simulate the hypothetical power output of a turbine at that location; repeating this procedure using many viable locations can produce a picture of future electricity generation. However, the estimate of hub height wind speed is dependent on the choice of the wind shear exponent a or the roughness length z0, and requires a number of simplifying assumptions. This paper investigates the sensitivity of this estimation on generation output using a case study of a met station in West Freugh, Scotland. The results show that the choice of wind shear exponent is a particularly sensitive parameter which can lead to significant variation of estimated hub height wind speed and hence estimated future generation potential of a region.
Resumo:
We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, ƒ(ν). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, ƒ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only −55±65 km s−1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvén speed at the X line is found to be 220±45 km s−1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km s−1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line.
Resumo:
This paper describes new advances in the exploitation of oxygen A-band measurements from POLDER3 sensor onboard PARASOL, satellite platform within the A-Train. These developments result from not only an account of the dependence of POLDER oxygen parameters to cloud optical thickness τ and to the scene's geometrical conditions but also, and more importantly, from the finer understanding of the sensitivity of these parameters to cloud vertical extent. This sensitivity is made possible thanks to the multidirectional character of POLDER measurements. In the case of monolayer clouds that represent most of cloudy conditions, new oxygen parameters are obtained and calibrated from POLDER3 data colocalized with the measurements of the two active sensors of the A-Train: CALIOP/CALIPSO and CPR/CloudSat. From a parameterization that is (μs, τ) dependent, with μs the cosine of the solar zenith angle, a cloud top oxygen pressure (CTOP) and a cloud middle oxygen pressure (CMOP) are obtained, which are estimates of actual cloud top and middle pressures (CTP and CMP). Performances of CTOP and CMOP are presented by class of clouds following the ISCCP classification. In 2008, the coefficient of the correlation between CMOP and CMP is 0.81 for cirrostratus, 0.79 for stratocumulus, 0.75 for deep convective clouds. The coefficient of the correlation between CTOP and CTP is 0.75, 0.73, and 0.79 for the same cloud types. The score obtained by CTOP, defined as the confidence in the retrieval for a particular range of inferred value and for a given error, is higher than the one of MODIS CTP estimate. Scores of CTOP are the highest for bin value of CTP superior in numbers. For liquid (ice) clouds and an error of 30 hPa (50 hPa), the score of CTOP reaches 50% (70%). From the difference between CTOP and CMOP, a first estimate of the cloud vertical extent h is possible. A second estimate of h comes from the correlation between the angular standard deviation of POLDER oxygen pressure σPO2 and the cloud vertical extent. This correlation is studied in detail in the case of liquid clouds. It is shown to be spatially and temporally robust, except for clouds above land during winter months. The analysis of the correlation's dependence on the scene's characteristics leads to a parameterization providing h from σPO2. For liquid water clouds above ocean in 2008, the mean difference between the actual cloud vertical extent and the one retrieved from σPO2 (from the pressure difference) is 5 m (−12 m). The standard deviation of the mean difference is close to 1000 m for the two methods. POLDER estimates of the cloud geometrical thickness obtain a global score of 50% confidence for a relative error of 20% (40%) of the estimate for ice (liquid) clouds over ocean. These results need to be validated outside of the CALIPSO/CloudSat track.
Resumo:
The aim of this study was to evaluate the pain influence regarding location, intensity and duration over functional capacity in institutionalized elderly (Fundacao Leur Brito). This is a descriptive exploratory study with a transversal design and quantitative approach. The population of the study was composed of 60 elderly, being 50% males with 60 years-old minimum age and 104 years-old maximum age, with mean age 77,6 (?}11,64) years-old. Data was collected by a structured query formulary divided in four parts: 1) Social, health and demographic characterization; 2) Pain related aspects (time and location); 3) Pain evaluation by numeric scale and 4) Functional capacity measured by Barthel Index. It was observed after evaluation by Squared-chi test (x2) statistical significant difference between pain presence and Barthel Index activities: bath (pvalue=0,015), dressing (p-value= 0,041), intimal hygiene transference (p-value=0,001), chair and bed transference (p-value=0,032), walking (p-value=0,010) and go upstairs (p-value=0,008). It was also observed statistical difference between total Barthel score (dependent/independent) and pain presence, p-value<0, 000. Through data obtained by this study, a multiprofessional approach is necessary to proper pain control and maintenance and/or regain of functional capacity, leading to an increase in life quality with more independence and autonomy to elderly
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this article, proportional hazards and logistic models for grouped survival data were extended to incorporate time-dependent covariates. The extension was motivated by a forestry experiment designed to compare five different water stresses in Eucalyptus grandis seedlings. The response was the seedling lifetime. The data set was grouped since there were just three occasions in which the seedlings was visited by the researcher. In each of these occasions also the shoot height was measured and therefore it is a time-dependent covariate. Both extended models were used in this example, and the results were very similar.
Resumo:
When estimating the effect of treatment on HIV using data from observational studies, standard methods may produce biased estimates due to the presence of time-dependent confounders. Such confounding can be present when a covariate, affected by past exposure, is both a predictor of the future exposure and the outcome. One example is the CD4 cell count, being a marker for disease progression for HIV patients, but also a marker for treatment initiation and influenced by treatment. Fitting a marginal structural model (MSM) using inverse probability weights is one way to give appropriate adjustment for this type of confounding. In this paper we study a simple and intuitive approach to estimate similar treatment effects, using observational data to mimic several randomized controlled trials. Each 'trial' is constructed based on individuals starting treatment in a certain time interval. An overall effect estimate for all such trials is found using composite likelihood inference. The method offers an alternative to the use of inverse probability of treatment weights, which is unstable in certain situations. The estimated parameter is not identical to the one of an MSM, it is conditioned on covariate values at the start of each mimicked trial. This allows the study of questions that are not that easily addressed fitting an MSM. The analysis can be performed as a stratified weighted Cox analysis on the joint data set of all the constructed trials, where each trial is one stratum. The model is applied to data from the Swiss HIV cohort study.
Resumo:
OBJECTIVE: To compare the risk of shunt-dependent hydrocephalus after treatment of ruptured intracranial aneurysms by clipping versus coiling. METHODS: We analyzed 596 patients prospectively added to our database from July of 1999 to November of 2005 concerning the risk of shunt dependency after clipping versus coiling. Factors analyzed included age; sex; Hunt and Hess grade; Fisher grade; acute hydrocephalus; intraventricular hemorrhage; angiographic vasospasm; and number, size, and location of aneurysms. In addition, a meta-analysis of available data from the literature was performed identifying four studies with quantitative data on the frequency of clip, coil, and shunt dependency. RESULTS: The institutional series revealed Hunt and Hess grade, Fisher grade, acute hydrocephalus, intraventricular hemorrhage, and angiographic vasospasm as significant (P < 0.05) risk factors for shunt dependency after a univariate analysis. In a multivariate logistic regression analysis, we isolated intraventricular hemorrhage, acute hydrocephalus, and angiographic vasospasm as independent, significant risk factors for shunt dependency. The meta-analysis, including the current data, revealed a significantly higher risk for shunt dependency after coiling than after clipping (P = 0.01). CONCLUSION: Clipping of a ruptured aneurysm may be associated with a lower risk for developing shunt dependency, possibly by clot removal. This might influence long-term outcome and surgical decision making.
Resumo:
There is a growing interest in the location of Treatment, Storage, and Disposal (TSDF) sites in relation to minority communities. A number of studies have been completed, and the results of these studies have been varied. Some of the studies have shown a strong positive correlation between the location of TSDF sites and minority populations, while a few have shown no significance in that relationship. The major difference between these studies has been in the areal unit used.^ This study compared the minority populations of Texas census tracts and ZIP codes containing a TSDF using the associated county as the comparison population. The hypothesis of this study was that there was no difference between using census tracts and ZIP codes to analyze the relationship of minority populations and TSDF's. The census data used was from 1990, and the initial list of TSDF sites was supplied by the Texas Natural Resource Conservation Commission. The TSDF site locations were checked using graphical information systems (GIS) programs, in order to increase the accuracy of the identity of exposed ZIP codes and census tracts. The minority populations of the exposed areal units were compared using proportional differences, crosstables, maps, and logistic regression. The dependent variable used was the exposure status of the areal units under study, including counties, census tracts, and ZIP codes. The independent variables used included minority group proportion and grouping of the proportions, educational status, household income, and home value.^ In all cases, education was significant or near significant at the.05 level. Education rather than minority proportion was therefore the most significant predictor of the exposure status of a census tract or ZIP code. ^