982 resultados para lithium modified silica


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified by ordered mesoporous silica-SBA-15 and Nafion. The sorption behavior of GOD immobilized on SBA-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that SBA-15 can facilitate the electron exchange between the electroactive center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and SBA-15 matrices displays direct, nearly reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 3.89 s(-1) in 0.1 M phosphate buffer solution (PBS) (pH 7.12).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium, tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A toluidine blue modified gold electrode was constructed using self-assembled silica gel technique. Firstly, toluidine blue was encapsulated within 3D network of silica self-assembly monolayer on the surface of gold electrode. Secondly, another layer of silica sol was further assembled to protect from leaching of mediator or possible contamination. The electrochemical characteristics of toluidine blue immobilized within self-assembled silica gel were studied in detail. The modified electrode was applied for electrochemical oxidation of NADH with satisfactory results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heteropoly acid H4SiW12O48 (denoted as SiW12) was assembled with the mesoporous materials MCM-41 modified with 3-aminopropyltriethoxysilane (APTES) (denote MCM-41((m))). The electrochemical behavior of SiW12/MCM-41((m)) complexes-based electrode indicated SiW12 anion was adsorbed by MCM-41((m)). In MCM-41((m)) electrode, large voltammetric waves, showing that the electrostatic bound ions adsorbed in MCM-41((m)) were electrochemically active. The potential application as amperometric sensors for nitrite is anticipated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Impedance study was carried out for the interfaces between lithium, polyaniline (PAn), lithium-doped MnO2 and modified poly(ethylene oxide) (PEO) electrolyte under various' conditions. The interfacial charge-transfer resistances R(ct) on PEO/PAn, R(ct) on PEO/LiMn2O4 increase with depth-of-discharge and decrease after the charge of the cell containing modified PEO as electrolyte. The charge-transfer resistance R(ct) on PEO/PAn is higher than R(ct) on PEO/LiMn2O4 under the same condition, since inserted species and mechanism are different for both cases. In the case of PAn, an additional charge-transfer resistance might be related to the electronic conductivity change in discharge/charge potential range, as it was evident from a voltammetry curve. With increasing cycle numbers, the charge-transfer resistance increases gradually. The impedance results also have shown that at low frequency the diffusion control is dominant in the process of the charge and discharge of Li/PEO/PAn or Li/PEO/LiMn2O4 cell. The diffusion coefficients have been calculated from impedance data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ordered mesoporous silica with cubic structure, type FDU-1, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butilene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)) and tetraethyl orthosilicate (TEOS). Humic acid (HA) was modified to the synthesis process at a concentration of 1.5 mmol per gram of SiO(2). Thermogravimetry, small angle X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscopy were used to characterize the samples. The pristine FDU-1 and FDU-1 with incorporated 1.5 mmol of HA were tested for adsorption of Pb(2+), Cu(2+) and Cd(2+) in aqueous solution. Incorporation of humic acid into the FDU-1 silica afforded an adsorbent with strong affinity for Cd(2+), Cu(2+) and Pb(2+) from single ion solutions. Adsorption of Cu(2+) was significantly enhanced after incorporation of humic acid, a fact that can be explained by the formation of complexes with carboxylic and phenolic groups at low concentrations of the metal cation. The results demonstrated the potential applicability of FDU-1 with incorporated HA in the removal of low concentrations of heavy metal cations from aqueous solution, such as wastewaters, after usual precipitation of metal hydroxides in alkaline medium and proper pH conditioning in the range between 6 and 7. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lithium nitrate has been used to prevent and to mediate the expansion caused by alkali-silica reaction (ASR). However, there is limited information on how it affects the existing reaction products caused by ASR. The aim of the present work is to determine the modifications caused by the LiNO3 treatment on the structure of the gel produced by ASR. ASR gel samples obtained from a concrete dam were exposed to an aqueous solution of lithium nitrate and sodium hydroxide with molar LiNO3/NaOH = 0.74, and the resulting products were analyzed by X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance of Si-29, Na-23, and Li-7. The treatment of the gel samples produces significant structural modifications in ASR products. A new amorphous silicate compound incorporating Li+ ions is formed, with an average silicate network that can be described as linear in contrast with the layered structure of the original gel. This elimination of the layered structure after the Li-based treatments may be related to the reduction of the tendency of the gel to expand. Also, several crystalline compounds containing potassium indicate the release of this species from the original ASR gel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol in the simultaneous determination of Pb(II), Cu(II) and Hg(II) ions in natural water and sugar cane spirit (cachaca) is described. Pb(II), Cu(II) and Hg(II) were pre-concentrated on the surface of the modified electrode by complexing with 2-benzothiazolethiol and reduced at a negative potential (-0.80 V). Then the reduced products were oxidised by DPASV procedure. The fact that three stripping peaks appeared on the voltammograms at the potentials of -0.48 V (Pb2+), -0.03 V (Cu2+) and +0.36 V (Hg2+) in relation to the SCE, demonstrates the possibility of simultaneous determination of Pb2+, Cu2+ and Hg2+. The best results were obtained under the following optimised conditions: 100 mV pulse amplitude, 3 min accumulation time, 25 mV s(-1) scan rate in phosphate solution pH 3.0. Using such parameters, calibration graphs were linear in the concentration ranges of 3.00-70.0 x 10(-7) mol L-1 (Pb2+), 8.00-100.0 X 10(-7) mol L-1 (Cu2+) and 2.00-10.0 x 10(-6) mol L-1 (Hg2+). Detection limits of 4.0 x 10(-8) mol L-1 (Pb2+), 2.0 x 10(-7) mol L-1 (Cu2+) and 4.0 x 10(-7) mol L-1 (Hg2+) were obtained at the signal noise ratio (SNR) of 3. The results indicate that this electrode is sensitive and effective for simultaneous determination of Pb2+, Cu2+ and Hg2+ in the analysed samples. (C) 2008 Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The isotherms of adsorption of CuX2 (X=Cl-, Br-, ClO4-) by silica gel chemically modified with 2-amino-1,3,4-thiadiazole were studied in acetone and ethanol solutions: at 298 K. The following equilibria constants (in 1 mol(-1)) were determined: (a) CuCl2: 3.5 x 10(3) (ac), 2.0 x 10(3) (eth); (b) CuBr2: 2.8 x 10(3) (ac), 2.0 x 10(3) (eth); (c) Cu(ClO4)(2): 1.8 x 10(3) (ac), 1.0 x 10(3) (eth); ac = acetone, eth = ethanol. The electron spin resonance spectra of the surface complexes indicated a tetragonal distorted structure in the case of lower degrees of metal loading on the chemically modified surface. The d-d electronic transition spectra showed that for the ClO4-, complex, the peak of absorption did not change for any degree of metal loading, and for Cl- and Br- complexes, the peak maxima shifted to a higher energy region with a lower metal loading. (C) 1998 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5-dimercapto-1,3,4-thiadiazole (DTTPSG-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L-1 KNO3; nu=20 mV s(-1)) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG-CPE. The anodic wave peak at 0.31 V is well-defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg (L)-(1) Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.