993 resultados para lipid transport
Resumo:
Mucolipidosis, type IV (ML-IV) is an autosomal recessive storage disease that is characterized by lysosomal accumulation of sphingolipids, phospholipids, and acid mucopolysaccharides. Unlike most other storage diseases, the lysosomal hydrolases participating in the catabolism of the stored molecules appear to be normal. In the present study, we examined the hypothesis that the ML-IV phenotype might arise from abnormal transport along the lysosomal pathway. By using various markers for endocytosis, we found that plasma membrane internalization and recycling were nearly identical in ML-IV and normal fibroblasts. A fluorescent analog of lactosylceramide (LacCer) was used to study plasma membrane lipid internalization and subsequent transport. Lipid internalization at 19°C was similar in both cell types; however, 40–60 min after raising the temperature to 37°C, the fluorescent lipid accumulated in the lysosomes of ML-IV cells but was mainly concentrated at the Golgi complex of normal fibroblasts. Biochemical studies demonstrated that at these time points, hydrolysis of the lipid analog was minimal (∼7%) in both cell types. A fluorescence ratio imaging assay was developed to monitor accumulation of fluorescent LacCer in the lysosomes and showed that the apparent concentration of the lipid increased more rapidly and to a greater extent in ML-IV cells than in normal fibroblasts. By 60 min, LacCer apparently decreased in the lysosomes of normal fibroblasts but not in ML-IV cells, suggesting that lipid efflux from the lysosomes was also impaired. These results demonstrate that there is a defect in ML-IV fibroblasts that affects membrane sorting and/or late steps of endocytosis.
Resumo:
The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the α (NR1C1) and γ (NR1C3) subtypes, respectively. By contrast, the therapeutic potential of the δ (NR1C2) subtype is unknown, due in part to the lack of selective ligands. We have used combinatorial chemistry and structure-based drug design to develop a potent and subtype-selective PPARδ agonist, GW501516. In macrophages, fibroblasts, and intestinal cells, GW501516 increases expression of the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux. When dosed to insulin-resistant middle-aged obese rhesus monkeys, GW501516 causes a dramatic dose-dependent rise in serum high density lipoprotein cholesterol while lowering the levels of small-dense low density lipoprotein, fasting triglycerides, and fasting insulin. Our results suggest that PPARδ agonists may be effective drugs to increase reverse cholesterol transport and decrease cardiovascular disease associated with the metabolic syndrome X.
Resumo:
Measurements of the quantum efficiencies of photosynthetic electron transport through photosystem II (φPSII) and CO2 assimilation (φCO2) were made simultaneously on leaves of maize (Zea mays) crops in the United Kingdom during the early growing season, when chilling conditions were experienced. The activities of a range of enzymes involved with scavenging active O2 species and the levels of key antioxidants were also measured. When leaves were exposed to low temperatures during development, the ratio of φPSII/φCO2 was elevated, indicating the operation of an alternative sink to CO2 for photosynthetic reducing equivalents. The activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and superoxide dismutase and the levels of ascorbate and α-tocopherol were also elevated during chilling periods. This supports the hypothesis that the relative flux of photosynthetic reducing equivalents to O2 via the Mehler reaction is higher when leaves develop under chilling conditions. Lipoxygenase activity and lipid peroxidation were also increased during low temperatures, suggesting that lipoxygenase-mediated peroxidation of membrane lipids contributes to the oxidative damage occurring in chill-stressed leaves.
Resumo:
The MAL proteolipid, a component of the integral protein sorting machinery, has been demonstrated as being necessary for normal apical transport of the influenza virus hemagglutinin (HA) and the overall apical membrane proteins in Madin-Darby canine kidney (MDCK) cells. The MAL carboxy terminus ends with the sequence Arg-Trp-Lys-Ser-Ser (RWKSS), which resembles dilysine-based motifs involved in protein sorting. To investigate whether the RWKSS pentapeptide plays a role in modulating the distribution of MAL and/or its function in apical transport, we have expressed MAL proteins with distinct carboxy terminus in MDCK cells whose apical transport was impaired by depletion of endogenous MAL. Apical transport of HA was restored to normal levels by expression of MAL with an intact but not with modified carboxyl terminal sequences bearing mutations that impair the functioning of dilysine-based sorting signals, although all the MAL proteins analyzed incorporated efficiently into lipid rafts. Ultrastructural analysis indicated that compared with MAL bearing an intact RWKSS sequence, a mutant with lysine −3 substituted by serine showed a twofold increased presence in clathrin-coated cytoplasmic structures and a reduced expression on the plasma membrane. These results indicate that the carboxyl-terminal RWKSS sequence modulates the distribution of MAL in clathrin-coated elements and is necessary for HA transport to the apical surface.
Resumo:
Since concomitant release of structurally related peptide hormones with apparently similar functions seems to be a general concept in endocrinology, we have studied the dynamics of the lifetime of the three known adipokinetic hormones (AKHs) of the migratory locust, which control flight-directed mobilization of carbohydrate and lipid from fat body stores. Although the structure of the first member of the AKHs has been known for 20 years, until now, reliable data on their inactivation and removal from the hemolymph are lacking, because measurement requires AKHs with high specific radioactivity. Employing tritiated AKHs with high specific radioactivity, obtained by catalytic reduction with tritium gas of the dehydroLeu2 analogues of the AKHs synthesized by the solid-phase procedure, studies with physiological doses of as low as 1.0 pmol per locust could be conducted. The AKHs appear to be transported in the hemolymph in their free forms and not associated with a carrier protein, despite their strong hydrophobicity. Application of AKHs in their free form in in vivo and in vitro studies therefore now has been justified. We have studied the degradation of the three AKHs during rest and flight. The first cleavage step by an endopeptidase is crucial, since the resulting degradation products lack any adipokinetic activity. Half-lives for AKH-I, -II and -III were 51, 40, and 5 min, respectively, for rest conditions and 35, 37, and 3 min, respectively, during flight. The rapid and differential degradation of structurally related hormones leads to changes in the ratio in which they are released and therefore will have important consequences for concerted hormone action at the level of the target organ or organs, suggesting that each of the known AKHs may play its own biological role in the overall syndrome of insect flight.
Resumo:
Apolipoprotein A-1 (apoA-1) in complex with high-density lipoprotein is critically involved in the transport and metabolism of cholesterol and in the pathogenesis of atherosclerosis. We reexamined the thermal unfolding of lipid-free apoA-1 in low-salt solution at pH approximately 7, by using differential scanning calorimetry and circular dichroism. At protein concentrations <5 mg/ml, thermal unfolding of apoA-1 is resolved as an extended peak (25 degrees C-90 degrees C) that can be largely accounted for by a single reversible non-two-state transition with midpoint Tm 57 +/- 1 degree C, calorimetric enthalpy deltaH(Tm)= 200 +/- 20 kcal/mol (1 kcal = 4.18 kJ), van't Hoff enthalpy deltaHv(Tm) approximately 32.5 kcal/mol, and cooperativity deltaHv(Tm)/deltaH(Tm) approximately 0.16. The enthalpy deltaH(Tm) can be accounted for by melting of the alpha-helical structure that is inferred by CD to constitute approximately 60% of apoA-1 amino acids. Farand near-UV CD spectra reveal noncoincident melting of the secondary and tertiary structural elements and indicate a well-defined secondary structure but a largely melted tertiary structure for apoA-1 at approximately 37 degrees C and pH 7. This suggests a molten globular-like state for lipid-free apoA-1 under near-physiological conditions. Our results suggest that in vivo lipid binding by apoA-1 may be mediated via the molten globular apolipoprotein state in plasma.
Resumo:
The electrophoretic export of ATP against the import of ADP in mitochondria bridges the intra- versus extramitochondrial ATP potential gap. Here we report that the electrical nature of the ADP/ATP exchange by the mitochondrial ADP/ATP carrier (AAC) can be directly studied by measuring the electrical currents via capacitive coupling of AAC-containing vesicles on a planar lipid membrane. The currents were induced by the rapid liberation of ATP or ADP with UV flash photolysis from caged nucleotides. Six different transport modes of the AAC were studied: heteroexchange with either ADP or ATP inside the vesicles, initiated by photolysis of caged ATP or ADP; homoexchange with ADPex/ADPin or ATPex/ATPin; and caged ADP or ATP with unloaded vesicles. The heteroexchange produced the largest currents with the longest duration in line with the electrical charge difference ATP4- versus ADP3-. Surprisingly, also in the homoexchange and with unloaded vesicles, small currents were measured with shorter duration. In all three modes with caged ATP, a negative charge moved into the vesicles and with caged ADP it moved out of the vesicles. All currents were completely inhibited by a mixture of the inhibitors of the AAC, carboxyatractyloside and hongkrekate, which proves that the currents are exclusively due to AAC function. The observed charge movements in the heteroexchange system agree with the prediction from transport studies in mitochondria and reconstituted vesicles. The unexpected charge movements in the homoexchange or unloaded systems are interpreted to reveal transmembrane rearrangements of charged sites in the AAC when occupied with ADP or ATP. The results also indicate that not only ATP4- but also ADP3- contribute, albeit in opposite direction, to the electrical nature of the ADP/ATP exchange, which is at variance with former conclusions from biochemical transport studies. These measurements open up new avenues of studying the electrical interactions of ADP and ATP with the AAC.
Resumo:
Eleven sediment samples taken downcore and representing the past 26 kyr of deposition at MANOP site C (0°57.2°N, 138°57.3°W) were analyzed for lipid biomarker composition. Biomarkers of both terrestrial and marine sources of organic carbon were identified. In general, concentration profiles for these biomarkers and for total organic carbon (TOC) displayed three common stratigraphic features in the time series: (1) a maximum within the surface sediment mixed layer (<=4 ka); (2) a broad minimum extending throughout the interglacial deposit; and (3) a deep, pronounced maximum within the glacial deposit. Using the biomarker records, a simple binary mixing model is described that assesses the proportion of terrestrial to marine TOC in these sediments. Best estimates from this model suggest that ~20% of the TOC is land-derived, introduced by long-range eolian transport, and the remainder is derived from marine productivity. The direct correlation between the records for terrestrial and marine TOC with depth in this core fits an interpretation that primary productivity at site C has been controlled by wind-driven upwelling at least over the last glacial/interglacial cycle. The biomarker records place the greatest wind strength and highest primary productivity within the time frame of 18 to 22 kyr B.P. Diagenetic effects limit our ability to ascertain directly from the biomarker records the absolute magnitude that different types of primary productivity have changed at this ocean location over the past 26 kyr.
Resumo:
Traditional vaccines consisting of whole attenuated micro-organisms. or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection. adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity. and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic. and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system. incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore. mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.
Resumo:
In the present study we identify inosine-5' monophosphate dehydrogenase (IMPDH), a key enzyme in de novo guanine nucleotide biosynthesis, as a novel lipid body-associated protein. To identify new targets of insulin we performed a comprehensive 2-DE analysis of P-32-labelled proteins isolated from 3T3-L1 adipocytes (Hill et al. J Biol Chem 2000; 275: 24313-24320). IMPDH was identified by liquid chromatography/tandem mass spectrometry as a protein which was phosphorylated in a phosphatidylinositol (PI) 3-kinase-dependent manner upon insulin treatment. Although insulin had no significant effect on IMPDH activity, we observed translocation of IMPDH to lipid bodies following insulin treatment. Induction of lipid body formation with oleic acid promoted dramatic redistribution of IMPDH to lipid bodies, which appeared to be in contact with the endoplasmic reticulum, the site of lipid body synthesis and recycling. Inhibition of PI 3-kinase blocked insulin- and oleate-induced translocation of IMPDH and reduced oleate-induced lipid accumulation. However, we found no evidence of oleate-induced IMPDH phosphorylation, suggesting phosphorylation and translocation may not be coupled events. These data support a role for IMPDH in the dynamic regulation of lipid bodies and fatty acid metabolism and regulation of its activity by subcellular redistribution in response to extracellular factors that modify lipid metabolism.
Resumo:
During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra- endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. This last step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid ( LBPA) and its putative effector Alix/ AIP1, and is regulated by phosphatidylinositol- 3-phosphate ( PtdIns( 3) P) signalling via the PtdIns( 3) P- binding protein Snx16. We conclude that the nucleocapsid is exported into the cytoplasm after the back- fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PtdIns( 3) P and their effectors.
Resumo:
In inflammatory disorders (e.g. psoriasis), local concentrations of human neutrophil elastase (HNE), also known as polymorphonuclear leukocyte elastase (HLE), possibly overwhelm its natural inhibitors leading to extracellular matrix degradation. Elevated levels of HNE have been reported in a variety of inflammatory disorders, including psoriasis. Peptidic HNE inhibitors have a common hydrophobic sequence (Ala-Ala-Pro-Val). This peptide sequence inhibits HNE competitively; however the stratum corneum presents an effective barrier to the delivery of this tetrapeptide across the skin. The current work investigates the delivery of the modified peptide whereby the tetrapeptide was lipidated to enhance its ability to penetrate the stratum The tetrapeptide Was Coupled to a racaemic mixture of a short chain lipoamino acid (LAA) resulting in two diastereomers of the lipoamino acid-modified tetrapeptide. The penetration of the lipopeptide mixture was assessed across human epidermis in vitro. The percentage of applied dose penetrating to the receptor over 8 h following administration was 2.53% for the D-LAA conjugate and 1.47% for the L-diastereomer, compared to 0% for the peptide. The D-diastereomer appears to be relatively stable but the L-diastereomer appears to degrade releasing possibly the tetrapeptide and peptide fragment(s). Therefore the results clearly indicate that coupling the tetrapeptide to a short chain LAA enhances its delivery across human epidermis.
Resumo:
Arsenic trioxide appears to be effective in the treatment of pro-myelocytic leukaemia. The substituted phenylarsen(III)oxides are highly polar, they have a high tendency to undergo oxidation to As (V) and to form oligomers, to prevent this we protected the As-(OH)2 group as cyclic dithiaarsanes. To increase the compound's biological stability and passive diffusion we conjugated the compound of interest with lipoamino acids (Laas). Alternatively, we further conjugated the dithiaarsane derivative with a carbohydrate to utilize active transport systems and to target compound. We investigated two novel glyco-lipid arsenicals (III) (compounds 9 and 11) for their ability to initiate MCF-7 breast cancer cell death and characterized the mechanism by which death was initiated. A significant decrease in MCF-7 cell proliferation was observed using 1 μM and 10 μM compound (11) and 10 μM of compound (9). Treatment with compound (11) triggered apoptosis of MFC-7 cells while compound (9) induced inhibition of cellular proliferation was not via rapid induction of apoptosis and more likely reflected necrosis and/ or alterations in the cell cycle. Differences in the anti-proliferative potency of the two compounds indicate that structural modifications influence effectiveness. © 2006 Bentham Science Publishers Ltd.
Resumo:
De nouveaux modèles cellulaires in vitro par transfert de milieu et par coculture ont été mis au point afin d’évaluer la capacité des HDL à éliminer l’excès de cholestérol des tissus périphériques et de le transporter vers le foie afin d’être excrété par le foie, un processus nommé le transport inverse du cholestérol (TIC). Le système cellulaire par transfert in vitro où des macrophages J774 sont gorgés de LDL acétylées et marqués au 3H-cholestérol a été préalablement établi afin de mesurer par scintillation l’efflux de cholestérol marqué vers le milieu de culture contenant des accepteurs de cholestérol. Ce milieu conditionné est transféré sur des cellules HepG2 afin d’étudier l’influx du cholestérol marqué. Ce dernier nous permet d’observer un transport de cholestérol de 25 % hors des J774 et un transport de 39 000 cpm dans les HepG2 en utilisant un milieu contenant 2 % de sérums humains mis en commun. Une stimulation des cellules J774 par l’AMPc augmente l’efflux et l’influx d’environ 45 %. Des tests de preuve de concept ont été effectués sur le système cellulaire par co-culture qui utilise des chambres de Boyden où les J774 sont localisées au fond d’un puits et les HepG2 dans un insert, et où le milieu est partagé entre les deux types cellulaires. On a déterminé qu’une confluence densité de 60 000 cellules/cm2 sur un insert constitué d’une membrane de polyester avec des pores de 3,0 μm, sans autre revêtement, permet d’observer un influx spécifique au sérum d’environ 6 000 cpm associés aux cellules HepG2, où 50 % des comptes radioactifs sont dans les cellules et l’autre moitié présente à la surface cellulaire.
Resumo:
In this study, we present a new multiproxy data set of terrigenous input, marine productivity and sea surface temperature (SST) from 52 surface sediment samples collected along E-W transects in the Pacific sector of the Southern Ocean. Allochtonous terrigenous input was characterized by the distribution of plant wax n-alkanes and soil-derived branched glycerol dialkyl glycerol tetraethers (brGDGTs). 230Th-normalized burial rates of both compound groups were highest close to the potential sources in Australia and New Zealand and are strongly related to lithogenic contents, indicating common sources and transport. Detection of both long-chain n-alkanes and brGDGTs at the most remote sites in the open ocean strongly suggests a primarily eolian transport mechanism to at least 110°W, i.e. by prevailing westerly winds. Two independent organic SST proxies were used, the UK'37 based on long-chain alkenones, and the TEX86 based on isoprenoid GDGTs. Both, UK'37 and TEX86 indices show robust relationships with temperature over a temperature range between 0.5 and 20°C, likely implying different seasonal and regional imprints on the temperature signal. While alkenone-based temperature estimates reliably reflect modern SST even at the low temperature end, large temperature residuals are observed for the polar ocean using the TEX86 index. 230Th-normalized burial rates of alkenones are highest close to the Subtropical Front and are positively related to lithogenic fluxes throughout the study area. In contrast, highest isoGDGT burial south of the Antarctic Polar Front is not related with dust flux but may be largely controlled by diatom blooms, and thus high opal fluxes during austral summer.