993 resultados para laser welding


Relevância:

60.00% 60.00%

Publicador:

Resumo:

利用高精度三坐标测量机扫描功能,充分获得焊接板材端面线性三维数据坐标值,采用基于最小二乘法而建立的理想直线数学模型来评定直线度误差,并与实际采用塞尺法进行对比,结果发现采用三坐标测量更能详尽地反应整个焊接边缘直线度真实情况,节省大量的数据处理时间,且数据更加准确可靠,并在实际激光焊接中获得良好激光焊缝,同时直观地给出了焊接板材边缘线性特征,为剪板机刀具调整提供了方向与位置。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

激光拼焊由于具有能量密度高,焊缝深宽比大,变形和热影响区小,焊接速度快,满足工件不同部位对材料各自性能的需求,焊接质量好,容易实现自动化等众多优点,使其广泛应用于工业中各个领域。激光拼焊生产线是利用高能激光作为焊接热源,将两块或多块汽车板材一次焊接成形,实现高效全自动化生产,年产可达百万片,以满足汽车行业的需求。而我国作为世界制造加工大国,目前尚不能完全独立自主开发激光拼焊成套装备。 针对自主开发激光拼焊成套装备的几个关键技术点,本文以中国科学院知识创新工程重要方向性项目“全自动激光拼焊成套装备关键技术研究与示范应用”为课题背景,结合项目实际开发中的具体要求,在对现有激光拼焊技术深入分析的基础上,对激光拼焊定位夹紧、最优化激光拼焊工艺和焊接接头机械性能、金相组织等方面进行了深入研究,得出了激光拼焊最优工艺规范和相应的焊接质量变化规律,为激光拼焊成套装备开发提供参考。 第一部分激光拼焊定位夹紧对中方法研究。重点分析了由于激光光束本身条件限制、激光拼焊生产线高速高效的要求、激光焊接热变形和目前国内汽车板材本身理化性能一致性差以及激光焊接过程中的诸多不确定因素,总结出了激光拼焊生产线工装夹具设计影响因素,并在此基础上指出了激光拼焊定位夹紧结构所应具备的功能特征。针对激光拼焊板材介于刚体和弹性体之间的柔性体特征,结合传统的定位原理“3-2-1”,提出了“N-2-1”的定位方式,给出了激光拼焊夹具定位原理及设计准则,初步建立了激光拼焊夹具参数化零件库和相应准则,并对激光拼焊夹紧机构进行了柔性分析,给出了拼焊夹具的柔性评价方案。 第二部分激光拼焊工艺研究。首先分析了激光拼焊工艺特征,重点研究了在大功率固态激光器条件下,激光拼焊焊接工艺参数主要包括激光功率、焊接速度、离焦量和侧吹保护气体的喷嘴高度、倾斜角度及气体流量等因素变化对焊接质量的影响,得出了变化规律曲线,为激光拼焊工艺规范微调方向提供参考依据;同时也为激光工艺库开发提供推理机制。最后系统全面地研究了目前汽车常用板材全厚度系列激光拼焊工艺,采用叠代寻优的方法获得到了适用于全自动激光拼焊生产线的最优化工艺规范。 第三部分激光拼焊工艺库开发。针对激光拼焊成套装备项目开发面临的问题:在中国市场中,激光拼焊成套装备销售必须附带汽车行业常用工艺规范库的现实问题。在大量试验的基础上,借助于VB6.0集成开发环境,建立了激光拼焊工艺库系统,主要包括激光拼焊示范应用模块、工艺参数查询模块、经济评估模块、数据库维护模块、管理查询模块等,初步实现了系统演示、查询、评估、管理等功能,基本满足激光拼焊生产线要求。 第四部分激光拼焊焊接接头金相组织性能研究。结合金属Fe3C相图,分析了在激光焊接快速冷却、大过冷度条件下,分别从合金性质、成分、固/液界面上的表面能、均相成核速度和固相生长速度等角度,探讨了金相组织结构变化特征。然后通过试验分别研究了汽车碳钢板和不锈钢板激光拼焊时,板材厚度、激光功率、焊接速度等工艺参数变化,对激光拼焊焊接接头的抗拉强度、显微组织硬度和金相组织结构影响。 第五部分针对激光拼焊钢板实际生产中,存在着焊接性能随焊接工艺变化差异大的问题,利用激光拼焊生产线实际得到的数据,建立了基于BP神经网络激光拼焊焊接性能预测模型,初步实现了根据工艺参数的改变,直接预测焊接力学性能的目的,克服了激光拼焊初期需大量试验性研究的缺点,为工艺参数优化研究提供了一种有效的手段。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

随着计算机视觉与机器人智能控制学科的飞速发展,在汽车工业中,结合视觉测量和机器人控制技术,采用激光拼焊方式加工汽车车身零部件显示出愈来愈重要的作用。在国外汽车板材激光拼焊技术已获得广泛应用,而在国内还只是处于研发和试生产阶段。应用工业机器人进行激光拼焊,不仅能充分发挥工业机器人灵活性、智能性等特点,而且还能代替大型激光拼焊装备进行生产,降低成本,提高效益。本课题以激光拼焊为背景,以搭建的工业机器人激光拼焊试验系统为研究平台,对基于视觉的激光焊接机器人焊缝位置信息获取及路径规划技术进行了研究。 在众多的信息获取方法中,立体视觉是一种有效的三维信息获取技术。一个完整的立体视觉过程包括:图像获取、特征提取、摄像机标定、立体匹配、深度信息计算和插值六个部分。单个摄像机获取的图像是二维的,图像的深度信息丢失。采用两个相同的摄像机在不同位置对被测物件取像,通过立体视觉匹配能计算出图像的深度信息。为避免立体匹配的困难,采用结构光代替其中一个摄像机是行之有效的方法。基于视觉的激光焊接机器人焊缝位置信息获取是立体视觉技术在激光焊接机器人焊接作业中的典型应用。对由CCD摄像机拍摄到工件图像进行算法处理提取出焊缝特征信息,是基于视觉的激光焊接机器人系统中关键技术之一。 图像处理的精度直接影响到整个视觉测量系统的精度,获取的焊缝位置信息的准确性直接决定着焊接任务的成败。焊缝在图像上表现为两条边缘,在成像条件较好的情况下,可以采用边缘特征提取的方法来获取工件焊缝的位置信息。亚像素边缘检测是近年来较为流行的边缘检测算法,检测的边缘精度可以达到亚像素级别。基于Zernike矩的亚像素边缘检测算法具有很好的抗噪性,适用于激光焊缝信息的提取,但检测出的边缘较粗,本文针对Zernike矩亚像素边缘检测存在的不足进行了算法改进,推导出7×7模板系数,并提出了新的边缘判断依据。试验验证了改进算法的有效性。改进的算法能获取焊缝位置精确信息。 阐述了Tsai两步法和Zhang的基于平面靶标标定的原理和标定过程。提出双线结构光视觉测量系统,建立了用于跟踪曲线焊缝的双线结构光视觉系统的数学模型,并给出标定方法。该方法首先采用Zhang的标定方法对摄像机进行标定,然后基于交比不变性原理,对结构光平面进行拟合。双线结构光视觉系统在跟踪曲线焊缝时,在一帧图像中可以同时检测出焊缝转角偏差和位置偏差,应用在机器人激光焊接焊缝跟踪上可获得比单线结构光更加丰富的信息。 激光焊接机器人焊枪的位姿直接影响着焊接质量的好坏。本文研究了机器人末端执行器位姿表达方法,建立了焊枪位姿和焊缝坐标系的数学模型。在激光焊接机器人焊接之前需要对焊缝编程,阐述了焊接机器人编程原理。针对在圆弧焊缝曲率变化较大的地方采用视觉测量方法存在较大的测量误差,提出偏转角的概念,对偏转角提前进行补偿,能明显提高焊接质量。 设计了测量焊接机器人轨迹误差的试验,对激光焊接机器人在高速焊接或焊接曲率较大的圆弧时轨迹误差进行了测量和分析。归纳了焊接机器人轨迹误差的来源及其产生的原因。给出了一种补偿机器人轨迹误差的方法。该方法的基本思想是先由结构光视觉系统测量出焊接机器人的重复轨迹误差,然后由视觉伺服系统补偿。实验证明,该方法应用在长焊缝和曲线焊缝焊接时,能有效补偿焊接机器人的轨迹误差。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

视觉检测技术是随着计算机视觉技术和光电技术的飞速发展,而出现的一种新的检测技术。检测被测目标时,把图像当作检测和传递信息的手段或载体,从图像中提取有用的信号,它是以现代光学为基础,融光电子学、计算机图像学、信息处理、计算机视觉等科学技术为一体的现代检测技术。现代激光自动化焊接技术是由激光、计算机、机器人、数控和精密机床等相结合的综合高新技术,此项技术已成为工业生产自动化的关键技术,拥有普通加工技术所不能比拟的优势。为了克服机器人焊接过程中各种不确定因素对焊接质量的影响,提高机器人作业的智能化水平和工作可靠性,要求焊接机器人系统不仅能实现空间焊缝的实时跟踪,而且还能实现焊接参数的在线调整和焊缝质量的实时控制,即焊接机器人焊接过程的自主化和智能化。本文的研究依托于中国科学院知识创新工程方向性项目“全自动激光拼焊成套装备生产线”,旨在探索立体视觉检测系统的实现及其在激光拼焊工程中的应用的问题。从理论和实践两个方面,对其中的若干关键技术,如视觉检测系统创新设计、数学模型、量化误差、摄像机标定、结构光条纹中心线提取、焊前特征检测、溶池边缘提取、焊后缺陷图像匹配算法、三维重建和表面孔的视觉定位等进行了研究。主要研究成果如下: 1.提出了一种可以用于焊前跟踪,焊后检测,以及焊接过程中对激光溶池进行监测的多功能激光视觉检测装置。推导了检测系统在不考虑像平面安装倾斜角度时和考虑像平面安装倾斜角度时检测点坐标的计算公式以及量化误差公式,分别针对由于数模转换量化误差、安装角度倾斜误差、安装高度误差三个方面引起的量化误差,分析其关于行,列,以及不同倾斜角度的影响分布规律。并对于各种情况进行了仿真,对于各种误差分布特征进行了分析,提出了检测奇异点的情况和数学模型的局限性。以上工作为实现焊缝三维信息的高精度提取奠定了基础。 2.对于摄像机的标定技术进行了研究,结合工程实际,利用zhang的标定法和matlab标定工具包,对于摄像机进行了标定;针对检测相机视场较小,标定采集范围不易调整和相机的畸变主要发生在视场边缘等特征,在保证要求的精度范围之内,提出一种基于标定靶的标定方法,实验证明该方法的标定与测量精度能够满足工程需要。 3.研究了现有的条纹中心提取算法过程,提出了基于OTSU阈值的多次高斯拟合平均法和基于OTSU阈值的质心平均法计算激光条纹中心坐标。该法对条纹的噪声,散斑和被测工件表面漫反射有很强的抵制作用,因此具有很强的鲁棒性。实验表明,与传统方法相比,具有更高的提取精度。同时为了适应激光条纹被工件表面调制后发生的角度变化,以及硬件安装带来的激光线型条纹倾斜,提出了一种自适应方向模板法,可以解决特殊倾斜角度时的激光条纹中心线提取问题。三个仿真试验验证了方法的可行性。 4.提出了一套在线实时进行焊前检测的图形处理算法,可以实现焊缝宽度,焊前错配和焊缝中心位置检测。通过工程实验提取了各指标的检测结果,并验证了算法的正确性。 5.提出了一种基于数学形态学的激光拼焊溶池边缘检测算法,对于激光拼焊中的溶池图像进行边缘提取,基于真实图像进行了实验研究表明,提取边缘效果可以达到单像素。 6.对焊后表面形貌检测的图像实时处理算法进行了研究。提出了一套在线实时进行焊后焊缝表面缺陷检测的图形处理算法,可以进行焊缝宽度,错配,凹度,凸度,咬边,焊接倾角,过高七种表面焊接缺陷的匹配识别;对于整个焊缝的表面形貌进行三维重建。通过等厚板焊接和不等厚板焊接两种试验,验证了算法的合理性和鲁棒性。提出了一种基于randon变换的错配和兴趣区域快速检测算法。对于表面孔的检测算法进行了探讨,主要针对孔的检测中的噪声和表面反射,研究了腐蚀膨胀对于表面孔定位和大小的检测影响。 7.研究了以普通6R机器人进行焊缝视觉检测的工作视野,即焊缝视觉检测空间,提出了一种生成焊缝视觉检测空间的解算法;以此检测视野为依托,探索了在视觉检测视野中进行焊缝视觉检测的初始位置规划问题,提出了一种初始位置规划算法;仿真结果证明了算法的正确性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

激光焊接技术是现代焊接技术的重要组成部分之一,在板材深加工产业中占有重要地位。激光拼焊技术具有高效率、高速度、高精度、强适应性等特点,被广泛应用于汽车、造船、航天等领域。激光拼焊定位、夹紧机构是激光拼焊装备的核心技术之一。目前国外已经研制出高性能激光拼焊装备,国内仍处在实验研发阶段。因此,对激光拼焊定位、夹紧机构展开研究,对实现激光拼焊装备的发展具有重要意义。本文以中国科学院知识创新工程方向性项目“全自动激光拼焊成套装备关键技术研究与示范应用”为课题背景,结合项目实际开发中的具体要求,以激光拼焊生产线核心技术之一的定位、夹紧机构为研究对象,在定位、夹紧机构的创新设计及综合性能评价、焊缝碾压精密预成型原理与实现技术、碾压机构优化方法以及定位机构误差补偿方法等方面开展了深入研究,为激光拼焊装备研制提供理论和技术支持。本文首先对研究激光拼焊定位、夹紧机构所需的一些基本理论进行了综述。在此基础上系统的研究了激光拼焊定位、夹紧机构设计方法及性能评价模型、基于多体系误差建模方法、焊缝碾压精密预成型、基于Kriging模型的碾压机构优化设计方法等。这些方法对激光拼焊定位、夹紧机构设计具有指导意义。以沈阳自动化研究所研制的全自动激光拼焊生产线为背景,依据定位、夹紧机构性能评价模型分析了该生产线定位、夹紧机构设计原理及存在的问题。为了解决这些问题,采取了机构优化及改进、压紧力优化、过盈量作用机制、多组焊等措施。实际试验证明这些措施在一定程度上提高了定位、夹紧机构的性能,但是由于定位、夹紧机构自身结构特点,无法解决非线性定位误差和长焊缝料片的定位等问题。针对所研制的激光拼焊焊定位、夹紧机构的不足,结合国外相关先进技术,提出了一种新型激光拼焊定位、夹紧机构,对其结构和原理进行介绍,并建立了其参数化三维模型。为了保证料片的准连续传输,采用了传输带和辊子的方式传输板材;设计了水平方向成α角,竖直方向共面的两个定位机构实现板材在传输过程中的定位;通过沿焊缝方向布置与传输方向成β夹角的压紧轮保证板材传输位置精度;采用焊缝碾压精密预成型机构降低非线性定位误差带来的间隙,保证了长焊缝激光拼焊的质量。新型激光拼焊定位、夹紧机构能完成任意长度和异形料片的定位与夹紧。非线性定位误差是制约长焊缝激光拼焊的瓶颈,焊缝碾压精密预成型是解决非线性定位误差的主要手段,为了指导焊缝碾压机构的设计,对焊缝碾压精密预成型原理与实现技术展开了深入研究:建立了碾压预成型数学模型;研究了碾压过程中金属塑性流动规律;研究了基于Kriging模型的机构优化方法建立全局优化模型,实现了碾压轮机构优化设计;提出了基于曲柄滑块原理的碾压轮机构,碾压轮和薄板压紧轮同轴并采用两端支撑,提高了碾压机构刚度并实现薄板压紧轮与碾压轮竖直方向相对位置的调节,以适应不同板厚差板材焊缝的碾压预成型。以上述理论为指导,建立了碾压预成型试验平台,碾压试验结果表明:碾压预成型机构能够有效解决超长焊缝非线性定位误差问题,能够消除最大为0.3mm的焊缝间隙。本文研究了激光拼焊定位、夹紧机构误差对焊接质量的影响及其误差补偿方法。通过工艺试验研究,建立了机构误差对焊缝界面形状影响的数学模型,完善了激光焊接工艺对机构误差的补偿机制,研究了碾压在激光拼焊中的特点及作用。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel numerical technique is proposed to model thermal plasma of microseconds/milliseconds time-scale effect. Modelling thermal plasma due to lightning strike will allow the estimation of electric current density, plasma pressure, and heat flux at the surface of the aircraft structure. These input data can then be used for better estimation of the mechanical/thermal induced damage on the aircraft structures for better protection systems design. Thermal plasma generated during laser cutting, electric (laser) welding and other plasma processing techniques have been the focus of many researchers. Thermal plasma is a gaseous state that consists from a mixture of electrons, ions, and natural particles. Thermal plasma can be assumed to be in local thermodynamic equilibrium, which means the electrons and the heavy species have equal temperature. Different numerical techniques have been developed using a coupled Navier Stokes – Heat transfer – Electromagnetic equations based on the assumption that the thermal plasma is a single laminar gas flow. These previous efforts focused on generating thermal plasma of time-scale in the range of seconds. Lighting strike on aircraft structures generates thermal plasma of time-scale of milliseconds/microseconds, which makes the previous physics used not applicable. The difficulty comes from the Navier-Stokes equations as the fluid is simulated under shock load, this introducing significant changes in the density and temperature of the fluid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This document presents particular description of work done during student’s internship in PR Metal company realized as ERASMUS PROJECT at ISEP. All information including company’s description and its structure, overview of the problems and analyzed cases, all stages of projects from concept to conclusion can be found here. Description of work done during the internship is divided here into two pieces. First part concerns one activities of the company which is robotic chefs (kitchen robot) production line. Work, that was done for development of this line involved several tasks, among them: creating a single-worker montage station for screwing robots housing’s parts, improve security system for laser welding chamber, what particularly consists in designing automatically closing door system with special surface, that protects against destructive action of laser beam, test station for examination of durability of heating connectors, solving problem with rotors vibrations. Second part tells about main task, realized in second half of internship and stands a complete description of machine development and design. The machine is a part of car handle latch cable production line and its tasks are: cutting cable to required length and hot-forming plastic cover for further assembly needs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. Adequate passive-fitting of one-piece cast 3-element implant-supported frameworks is hard to achieve. This short communication aims to present an alternative method for section of one-piece cast frameworks and for casting implant-supported frameworks. MATERIALS AND METHODS. Three-unit implant-supported nickel-chromium (Ni-Cr) frameworks were tested for vertical misfit (n = 6). The frameworks were cast as one-piece (Group A) and later transversally sectioned through a diagonal axis (Group B) and compared to frameworks that were cast diagonally separated (Group C). All separated frameworks were laser welded. Only one side of the frameworks was screwed. RESULTS. The results on the tightened side were significantly lower in Group C (6.43 +/- 3.24 mu m) when compared to Groups A (16.50 +/- 7.55 mu m) and B (16.27 +/- 1.71 mu m) (P<.05). On the opposite side, the diagonal section of the one-piece castings for laser welding showed significant improvement in the levels of misfit of the frameworks (Group A, 58.66 +/- 14.30 mu m; Group B, 39.4.8 +/- 12.03 mu m; Group C, 23.13 +/- 8.24 mu m) (P<.05). CONCLUSION. Casting diagonally sectioned frameworks lowers the misfit levels. Lower misfit levels for the frameworks can be achieved by diagonally sectioning one-piece frameworks. [J Adv Prosthodont 2012;4:89-92]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El proceso de soldadura por láser desarrollado en los últimos años ha puesto de manifiesto las posibilidades de aplicación de esta tecnología en diferentes sectores productivos, principalmente en la industria automovilística, en la cual se han demostrado sus ventajas en términos de productividad, eficiencia y calidad. El uso de la tecnología láser, ya sea híbrida o pura, reduce el input térmico al limitar la zona afectada por el calor, sin crear deformaciones y, por tanto, disminuye los re-trabajos post-soldadura necesarios para eliminarlas. Asimismo, se aumenta la velocidad de soldadura, incrementando la productividad y calidad de las uniones. En la última década, el uso de láseres híbridos, (láser + arco) de gran potencia de Neodimio YAG, (Nd: YAG) ha sido cada vez más importante. La instalación de este tipo de fuentes de láser sólido de gran potencia ha sido posible en construcción naval debido a sus ventajas con respecto a las instalaciones de láser de C02 existentes en los astilleros que actualmente utilizan esta tecnología. Los láseres de C02 están caracterizados por su gran potencia y la transmisión del haz a través de espejos. En el caso de las fuentes de Nd:YAG, debido a la longitud de onda a la cual se genera el haz láser, su transmisión pueden ser realizada a través de fibra óptica , haciendo posible la utilización del cabezal láser a gran distancia de la fuente, aparte de la alternativa de integrar el cabezal en unidades robotizadas. El proceso láser distribuye el calor aportado de manera uniforme. Las características mecánicas de dichas uniones ponen de manifiesto la adecuación de la soldadura por láser para su uso en construcción naval, cumpliendo los requerimientos exigidos por las Sociedades de Clasificación. La eficiencia energética de los láseres de C02, con porcentajes superiores al 20%, aparte de las ya estudiadas técnicas de su instalación constituyen las razones por las cuales este tipo de láser es el más usado en el ámbito industrial. El láser de gran potencia de Nd: YAG está presente en el mercado desde hace poco tiempo, y por tanto, su precio es relativamente mayor que el de C02, siendo sus costes de mantenimiento, tanto de lámparas como de diodos necesarios para el bombeo del sólido, igualmente mayores que en el caso del C02. En cambio, el efecto de absorción de parte de la energía en el plasma generado durante el proceso no se produce en el caso del láser de Nd: YAG, utilizando parte de esa energía en estabilizar el arco, siendo necesaria menos potencia de la fuente, reduciendo el coste de la inversión. En función de la aplicación industrial, se deberá realizar el análisis de viabilidad económica correspondiente. Dependiendo de la potencia de la fuente y del tipo de láser utilizado, y por tanto de la longitud de onda a la que se propaga la radiación electromagnética, pueden existen riesgos para la salud. El láser de neodimio se propaga en una longitud de onda, relativamente cercana al rango visible, en la cual se pueden producir daños en los ojos de los operadores. Se deberán establecer las medidas preventivas para evitar los riesgos a los que están expuestos dichos operadores en la utilización de este tipo de energía. La utilización del láser de neodimio: YAG ofrece posibilidades de utilización en construcción naval económicamente rentables, debido su productividad y las buenas características mecánicas de las uniones. Abstract The laser welding process development of the last years shows broad application possibilities in many sectors of industry, mostly in automobile production. The advantages of the laser beam process produce higher productivity, increasing the quality and thermal efficiency. Laser technology, arc-hybrid or pure laser welding, reduces thermal input and thus a smaller heat-affected zone at the work piece. This means less weldment distortion which reduces the amount of subsequent post-weld straightening work that needs to be done. A higher welding speed is achieved by use of the arc and the laser beam, increasing productivity and quality of the joining process. In the last decade use of hybrid technology (laser-GMA hybrid method) with high power sources Nd:YAG lasers, gained in importance. The installation of this type of higher power solid state laser is possible in shipbuilding industrial applications due to its advantages compare with the C02 laser sources installed in the shipyards which use this technology. C02 lasers are characterised by high power output and its beam guidance is via inelastic system of mirrors. In the case of Nd:YAG laser, due to its wavelength, the laser beam can be led by means of a flexible optical fibre even across large distances, which allows three dimensional welding jobs by using of robots. Laser beam welding is a process during which the heat is transferred to the welded material uniformly and the features of the process fulfilled the requirements by Classification Societies. So that, its application to the shipbuilding industry should be possible. The high quantum efficiency of C02 laser, which enabled efficiency factors up to 20%, and relative simple technical possibilities of implementation are the reasons for the fact that it is the most important laser in industrial material machining. High power Nd: YAG laser is established on the market since short time, so that its price is relatively high compared with the C02 laser source and its maintenance cost, lamp or diode pumped solid state laser, is also higher than in the case of C02 lasers. Nevertheless effect of plasma shielding does not exist with Nd:YAG lasers, so that for the gas-shielding welding process the optimal gases can be used regarding arc stability, thus power source are saved and the costs can be optimised. Each industrial application carried out needs its cost efficiency analysis. Depending on the power output and laser type, the dangerousness of reflected irradiation, which even in some meters distance, affects for the healthy operators. For the YAG laser process safety arrangements must be set up in order to avoid the laser radiation being absorbed by the human eye. Due to its wavelength of radiation, being relatively close to the visible range, severe damage to the retina of the eye is possible if sufficient precautions are not taken. Safety aspects are of vital importance to be able to shield the operator as well as other personal. The use of Nd:YAG lasers offers interesting and economically attractive applications in shipbuilding industry. Higher joining rates are possible, and very good mechanical/technological parameters can be achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La fusión nuclear es, hoy en día, una alternativa energética a la que la comunidad internacional dedica mucho esfuerzo. El objetivo es el de generar entre diez y cincuenta veces más energía que la que consume mediante reacciones de fusión que se producirán en una mezcla de deuterio (D) y tritio (T) en forma de plasma a doscientos millones de grados centígrados. En los futuros reactores nucleares de fusión será necesario producir el tritio utilizado como combustible en el propio reactor termonuclear. Este hecho supone dar un paso más que las actuales máquinas experimentales dedicadas fundamentalmente al estudio de la física del plasma. Así pues, el tritio, en un reactor de fusión, se produce en sus envolturas regeneradoras cuya misión fundamental es la de blindaje neutrónico, producir y recuperar tritio (fuel para la reacción DT del plasma) y por último convertir la energía de los neutrones en calor. Existen diferentes conceptos de envolturas que pueden ser sólidas o líquidas. Las primeras se basan en cerámicas de litio (Li2O, Li4SiO4, Li2TiO3, Li2ZrO3) y multiplicadores neutrónicos de Be, necesarios para conseguir la cantidad adecuada de tritio. Los segundos se basan en el uso de metales líquidos o sales fundidas (Li, LiPb, FLIBE, FLINABE) con multiplicadores neutrónicos de Be o el propio Pb en el caso de LiPb. Los materiales estructurales pasan por aceros ferrítico-martensíticos de baja activación, aleaciones de vanadio o incluso SiCf/SiC. Cada uno de los diferentes conceptos de envoltura tendrá una problemática asociada que se estudiará en el reactor experimental ITER (del inglés, “International Thermonuclear Experimental Reactor”). Sin embargo, ITER no puede responder las cuestiones asociadas al daño de materiales y el efecto de la radiación neutrónica en las diferentes funciones de las envolturas regeneradoras. Como referencia, la primera pared de un reactor de fusión de 4000MW recibiría 30 dpa/año (valores para Fe-56) mientras que en ITER se conseguirían <10 dpa en toda su vida útil. Esta tesis se encuadra en el acuerdo bilateral entre Europa y Japón denominado “Broader Approach Agreement “(BA) (2007-2017) en el cual España juega un papel destacable. Estos proyectos, complementarios con ITER, son el acelerador para pruebas de materiales IFMIF (del inglés, “International Fusion Materials Irradiation Facility”) y el dispositivo de fusión JT-60SA. Así, los efectos de la irradiación de materiales en materiales candidatos para reactores de fusión se estudiarán en IFMIF. El objetivo de esta tesis es el diseño de un módulo de IFMIF para irradiación de envolturas regeneradoras basadas en metales líquidos para reactores de fusión. El módulo se llamará LBVM (del inglés, “Liquid Breeder Validation Module”). La propuesta surge de la necesidad de irradiar materiales funcionales para envolturas regeneradoras líquidas para reactores de fusión debido a que el diseño conceptual de IFMIF no contaba con esta utilidad. Con objeto de analizar la viabilidad de la presente propuesta, se han realizado cálculos neutrónicos para evaluar la idoneidad de llevar a cabo experimentos relacionados con envolturas líquidas en IFMIF. Así, se han considerado diferentes candidatos a materiales funcionales de envolturas regeneradoras: Fe (base de los materiales estructurales), SiC (material candidato para los FCI´s (del inglés, “Flow Channel Inserts”) en una envoltura regeneradora líquida, SiO2 (candidato para recubrimientos antipermeación), CaO (candidato para recubrimientos aislantes), Al2O3 (candidato para recubrimientos antipermeación y aislantes) y AlN (material candidato para recubrimientos aislantes). En cada uno de estos materiales se han calculado los parámetros de irradiación más significativos (dpa, H/dpa y He/dpa) en diferentes posiciones de IFMIF. Estos valores se han comparado con los esperados en la primera pared y en la zona regeneradora de tritio de un reactor de fusión. Para ello se ha elegido un reactor tipo HCLL (del inglés, “Helium Cooled Lithium Lead”) por tratarse de uno de los más prometedores. Además, los valores también se han comparado con los que se obtendrían en un reactor rápido de fisión puesto que la mayoría de las irradiaciones actuales se hacen en reactores de este tipo. Como conclusión al análisis de viabilidad, se puede decir que los materiales funcionales para mantos regeneradores líquidos podrían probarse en la zona de medio flujo de IFMIF donde se obtendrían ratios de H/dpa y He/dpa muy parecidos a los esperados en las zonas más irradiadas de un reactor de fusión. Además, con el objetivo de ajustar todavía más los valores, se propone el uso de un moderador de W (a considerar en algunas campañas de irradiación solamente debido a que su uso hace que los valores de dpa totales disminuyan). Los valores obtenidos para un reactor de fisión refuerzan la idea de la necesidad del LBVM, ya que los valores obtenidos de H/dpa y He/dpa son muy inferiores a los esperados en fusión y, por lo tanto, no representativos. Una vez demostrada la idoneidad de IFMIF para irradiar envolturas regeneradoras líquidas, y del estudio de la problemática asociada a las envolturas líquidas, también incluida en esta tesis, se proponen tres tipos de experimentos diferentes como base de diseño del LBVM. Éstos se orientan en las necesidades de un reactor tipo HCLL aunque a lo largo de la tesis se discute la aplicabilidad para otros reactores e incluso se proponen experimentos adicionales. Así, la capacidad experimental del módulo estaría centrada en el estudio del comportamiento de litio plomo, permeación de tritio, corrosión y compatibilidad de materiales. Para cada uno de los experimentos se propone un esquema experimental, se definen las condiciones necesarias en el módulo y la instrumentación requerida para controlar y diagnosticar las cápsulas experimentales. Para llevar a cabo los experimentos propuestos se propone el LBVM, ubicado en la zona de medio flujo de IFMIF, en su celda caliente, y con capacidad para 16 cápsulas experimentales. Cada cápsula (24-22 mm de diámetro y 80 mm de altura) contendrá la aleación eutéctica LiPb (hasta 50 mm de la altura de la cápsula) en contacto con diferentes muestras de materiales. Ésta irá soportada en el interior de tubos de acero por los que circulará un gas de purga (He), necesario para arrastrar el tritio generado en el eutéctico y permeado a través de las paredes de las cápsulas (continuamente, durante irradiación). Estos tubos, a su vez, se instalarán en una carcasa también de acero que proporcionará soporte y refrigeración tanto a los tubos como a sus cápsulas experimentales interiores. El módulo, en su conjunto, permitirá la extracción de las señales experimentales y el gas de purga. Así, a través de la estación de medida de tritio y el sistema de control, se obtendrán los datos experimentales para su análisis y extracción de conclusiones experimentales. Además del análisis de datos experimentales, algunas de estas señales tendrán una función de seguridad y por tanto jugarán un papel primordial en la operación del módulo. Para el correcto funcionamiento de las cápsulas y poder controlar su temperatura, cada cápsula se equipará con un calentador eléctrico y por tanto el módulo requerirá también ser conectado a la alimentación eléctrica. El diseño del módulo y su lógica de operación se describe en detalle en esta tesis. La justificación técnica de cada una de las partes que componen el módulo se ha realizado con soporte de cálculos de transporte de tritio, termohidráulicos y mecánicos. Una de las principales conclusiones de los cálculos de transporte de tritio es que es perfectamente viable medir el tritio permeado en las cápsulas mediante cámaras de ionización y contadores proporcionales comerciales, con sensibilidades en el orden de 10-9 Bq/m3. Los resultados son aplicables a todos los experimentos, incluso si son cápsulas a bajas temperaturas o si llevan recubrimientos antipermeación. Desde un punto de vista de seguridad, el conocimiento de la cantidad de tritio que está siendo transportada con el gas de purga puede ser usado para detectar de ciertos problemas que puedan estar sucediendo en el módulo como por ejemplo, la rotura de una cápsula. Además, es necesario conocer el balance de tritio de la instalación. Las pérdidas esperadas el refrigerante y la celda caliente de IFMIF se pueden considerar despreciables para condiciones normales de funcionamiento. Los cálculos termohidráulicos se han realizado con el objetivo de optimizar el diseño de las cápsulas experimentales y el LBVM de manera que se pueda cumplir el principal requisito del módulo que es llevar a cabo los experimentos a temperaturas comprendidas entre 300-550ºC. Para ello, se ha dimensionado la refrigeración necesaria del módulo y evaluado la geometría de las cápsulas, tubos experimentales y la zona experimental del contenedor. Como consecuencia de los análisis realizados, se han elegido cápsulas y tubos cilíndricos instalados en compartimentos cilíndricos debido a su buen comportamiento mecánico (las tensiones debidas a la presión de los fluidos se ven reducidas significativamente con una geometría cilíndrica en lugar de prismática) y térmico (uniformidad de temperatura en las paredes de los tubos y cápsulas). Se han obtenido campos de presión, temperatura y velocidad en diferentes zonas críticas del módulo concluyendo que la presente propuesta es factible. Cabe destacar que el uso de códigos fluidodinámicos (e.g. ANSYS-CFX, utilizado en esta tesis) para el diseño de cápsulas experimentales de IFMIF no es directo. La razón de ello es que los modelos de turbulencia tienden a subestimar la temperatura de pared en mini canales de helio sometidos a altos flujos de calor debido al cambio de las propiedades del fluido cerca de la pared. Los diferentes modelos de turbulencia presentes en dicho código han tenido que ser estudiados con detalle y validados con resultados experimentales. El modelo SST (del inglés, “Shear Stress Transport Model”) para turbulencia en transición ha sido identificado como adecuado para simular el comportamiento del helio de refrigeración y la temperatura en las paredes de las cápsulas experimentales. Con la geometría propuesta y los valores principales de refrigeración y purga definidos, se ha analizado el comportamiento mecánico de cada uno de los tubos experimentales que contendrá el módulo. Los resultados de tensiones obtenidos, han sido comparados con los valores máximos recomendados en códigos de diseño estructural como el SDC-IC (del inglés, “Structural Design Criteria for ITER Components”) para así evaluar el grado de protección contra el colapso plástico. La conclusión del estudio muestra que la propuesta es mecánicamente robusta. El LBVM implica el uso de metales líquidos y la generación de tritio además del riesgo asociado a la activación neutrónica. Por ello, se han estudiado los riesgos asociados al uso de metales líquidos y el tritio. Además, se ha incluido una evaluación preliminar de los riesgos radiológicos asociados a la activación de materiales y el calor residual en el módulo después de la irradiación así como un escenario de pérdida de refrigerante. Los riesgos asociados al módulo de naturaleza convencional están asociados al manejo de metales líquidos cuyas reacciones con aire o agua se asocian con emisión de aerosoles y probabilidad de fuego. De entre los riesgos nucleares destacan la generación de gases radiactivos como el tritio u otros radioisótopos volátiles como el Po-210. No se espera que el módulo suponga un impacto medioambiental asociado a posibles escapes. Sin embargo, es necesario un manejo adecuado tanto de las cápsulas experimentales como del módulo contenedor así como de las líneas de purga durante operación. Después de un día de después de la parada, tras un año de irradiación, tendremos una dosis de contacto de 7000 Sv/h en la zona experimental del contenedor, 2300 Sv/h en la cápsula y 25 Sv/h en el LiPb. El uso por lo tanto de manipulación remota está previsto para el manejo del módulo irradiado. Por último, en esta tesis se ha estudiado también las posibilidades existentes para la fabricación del módulo. De entre las técnicas propuestas, destacan la electroerosión, soldaduras por haz de electrones o por soldadura láser. Las bases para el diseño final del LBVM han sido pues establecidas en el marco de este trabajo y han sido incluidas en el diseño intermedio de IFMIF, que será desarrollado en el futuro, como parte del diseño final de la instalación IFMIF. ABSTRACT Nuclear fusion is, today, an alternative energy source to which the international community devotes a great effort. The goal is to generate 10 to 50 times more energy than the input power by means of fusion reactions that occur in deuterium (D) and tritium (T) plasma at two hundred million degrees Celsius. In the future commercial reactors it will be necessary to breed the tritium used as fuel in situ, by the reactor itself. This constitutes a step further from current experimental machines dedicated mainly to the study of the plasma physics. Therefore, tritium, in fusion reactors, will be produced in the so-called breeder blankets whose primary mission is to provide neutron shielding, produce and recover tritium and convert the neutron energy into heat. There are different concepts of breeding blankets that can be separated into two main categories: solids or liquids. The former are based on ceramics containing lithium as Li2O , Li4SiO4 , Li2TiO3 , Li2ZrO3 and Be, used as a neutron multiplier, required to achieve the required amount of tritium. The liquid concepts are based on molten salts or liquid metals as pure Li, LiPb, FLIBE or FLINABE. These blankets use, as neutron multipliers, Be or Pb (in the case of the concepts based on LiPb). Proposed structural materials comprise various options, always with low activation characteristics, as low activation ferritic-martensitic steels, vanadium alloys or even SiCf/SiC. Each concept of breeding blanket has specific challenges that will be studied in the experimental reactor ITER (International Thermonuclear Experimental Reactor). However, ITER cannot answer questions associated to material damage and the effect of neutron radiation in the different breeding blankets functions and performance. As a reference, the first wall of a fusion reactor of 4000 MW will receive about 30 dpa / year (values for Fe-56) , while values expected in ITER would be <10 dpa in its entire lifetime. Consequently, the irradiation effects on candidate materials for fusion reactors will be studied in IFMIF (International Fusion Material Irradiation Facility). This thesis fits in the framework of the bilateral agreement among Europe and Japan which is called “Broader Approach Agreement “(BA) (2007-2017) where Spain plays a key role. These projects, complementary to ITER, are mainly IFMIF and the fusion facility JT-60SA. The purpose of this thesis is the design of an irradiation module to test candidate materials for breeding blankets in IFMIF, the so-called Liquid Breeder Validation Module (LBVM). This proposal is born from the fact that this option was not considered in the conceptual design of the facility. As a first step, in order to study the feasibility of this proposal, neutronic calculations have been performed to estimate irradiation parameters in different materials foreseen for liquid breeding blankets. Various functional materials were considered: Fe (base of structural materials), SiC (candidate material for flow channel inserts, SiO2 (candidate for antipermeation coatings), CaO (candidate for insulating coatings), Al2O3 (candidate for antipermeation and insulating coatings) and AlN (candidate for insulation coating material). For each material, the most significant irradiation parameters have been calculated (dpa, H/dpa and He/dpa) in different positions of IFMIF. These values were compared to those expected in the first wall and breeding zone of a fusion reactor. For this exercise, a HCLL (Helium Cooled Lithium Lead) type was selected as it is one of the most promising options. In addition, estimated values were also compared with those obtained in a fast fission reactor since most of existing irradiations have been made in these installations. The main conclusion of this study is that the medium flux area of IFMIF offers a good irradiation environment to irradiate functional materials for liquid breeding blankets. The obtained ratios of H/dpa and He/dpa are very similar to those expected in the most irradiated areas of a fusion reactor. Moreover, with the aim of bringing the values further close, the use of a W moderator is proposed to be used only in some experimental campaigns (as obviously, the total amount of dpa decreases). The values of ratios obtained for a fission reactor, much lower than in a fusion reactor, reinforce the need of LBVM for IFMIF. Having demonstrated the suitability of IFMIF to irradiate functional materials for liquid breeding blankets, and an analysis of the main problems associated to each type of liquid breeding blanket, also presented in this thesis, three different experiments are proposed as basis for the design of the LBVM. These experiments are dedicated to the needs of a blanket HCLL type although the applicability of the module for other blankets is also discussed. Therefore, the experimental capability of the module is focused on the study of the behavior of the eutectic alloy LiPb, tritium permeation, corrosion and material compatibility. For each of the experiments proposed an experimental scheme is given explaining the different module conditions and defining the required instrumentation to control and monitor the experimental capsules. In order to carry out the proposed experiments, the LBVM is proposed, located in the medium flux area of the IFMIF hot cell, with capability of up to 16 experimental capsules. Each capsule (24-22 mm of diameter, 80 mm high) will contain the eutectic allow LiPb (up to 50 mm of capsule high) in contact with different material specimens. They will be supported inside rigs or steel pipes. Helium will be used as purge gas, to sweep the tritium generated in the eutectic and permeated through the capsule walls (continuously, during irradiation). These tubes, will be installed in a steel container providing support and cooling for the tubes and hence the inner experimental capsules. The experimental data will consist of on line monitoring signals and the analysis of purge gas by the tritium measurement station. In addition to the experimental signals, the module will produce signals having a safety function and therefore playing a major role in the operation of the module. For an adequate operation of the capsules and to control its temperature, each capsule will be equipped with an electrical heater so the module will to be connected to an electrical power supply. The technical justification behind the dimensioning of each of these parts forming the module is presented supported by tritium transport calculations, thermalhydraulic and structural analysis. One of the main conclusions of the tritium transport calculations is that the measure of the permeated tritium is perfectly achievable by commercial ionization chambers and proportional counters with sensitivity of 10-9 Bq/m3. The results are applicable to all experiments, even to low temperature capsules or to the ones using antipermeation coatings. From a safety point of view, the knowledge of the amount of tritium being swept by the purge gas is a clear indicator of certain problems that may be occurring in the module such a capsule rupture. In addition, the tritium balance in the installation should be known. Losses of purge gas permeated into the refrigerant and the hot cell itself through the container have been assessed concluding that they are negligible for normal operation. Thermal hydraulic calculations were performed in order to optimize the design of experimental capsules and LBVM to fulfill one of the main requirements of the module: to perform experiments at uniform temperatures between 300-550ºC. The necessary cooling of the module and the geometry of the capsules, rigs and testing area of the container were dimensioned. As a result of the analyses, cylindrical capsules and rigs in cylindrical compartments were selected because of their good mechanical behavior (stresses due to fluid pressure are reduced significantly with a cylindrical shape rather than prismatic) and thermal (temperature uniformity in the walls of the tubes and capsules). Fields of pressure, temperature and velocity in different critical areas of the module were obtained concluding that the proposal is feasible. It is important to mention that the use of fluid dynamic codes as ANSYS-CFX (used in this thesis) for designing experimental capsules for IFMIF is not direct. The reason for this is that, under strongly heated helium mini channels, turbulence models tend to underestimate the wall temperature because of the change of helium properties near the wall. Therefore, the different code turbulence models had to be studied in detail and validated against experimental results. ANSYS-CFX SST (Shear Stress Transport Model) for transitional turbulence model has been identified among many others as the suitable one for modeling the cooling helium and the temperature on the walls of experimental capsules. Once the geometry and the main purge and cooling parameters have been defined, the mechanical behavior of each experimental tube or rig including capsules is analyzed. Resulting stresses are compared with the maximum values recommended by applicable structural design codes such as the SDC- IC (Structural Design Criteria for ITER Components) in order to assess the degree of protection against plastic collapse. The conclusion shows that the proposal is mechanically robust. The LBVM involves the use of liquid metals, tritium and the risk associated with neutron activation. The risks related with the handling of liquid metals and tritium are studied in this thesis. In addition, the radiological risks associated with the activation of materials in the module and the residual heat after irradiation are evaluated, including a scenario of loss of coolant. Among the identified conventional risks associated with the module highlights the handling of liquid metals which reactions with water or air are accompanied by the emission of aerosols and fire probability. Regarding the nuclear risks, the generation of radioactive gases such as tritium or volatile radioisotopes such as Po-210 is the main hazard to be considered. An environmental impact associated to possible releases is not expected. Nevertheless, an appropriate handling of capsules, experimental tubes, and container including purge lines is required. After one day after shutdown and one year of irradiation, the experimental area of the module will present a contact dose rate of about 7000 Sv/h, 2300 Sv/h in the experimental capsules and 25 Sv/h in the LiPb. Therefore, the use of remote handling is envisaged for the irradiated module. Finally, the different possibilities for the module manufacturing have been studied. Among the proposed techniques highlights the electro discharge machining, brazing, electron beam welding or laser welding. The bases for the final design of the LBVM have been included in the framework of the this work and included in the intermediate design report of IFMIF which will be developed in future, as part of the IFMIF facility final design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pulsed Nd:YAG has been adopted successfully in welding process of thin (0.7 mm) Ti6Al4V. Laser welding of such thin sheet requires a small focal spot, good laser beam quality and fast travel speed, since too much heat generation can cause distortion for thin sheet weld. The microstructures of Ti6Al4V were complex and strongly affected the mechanical properties. These structures include: a´ martensite, metastable ß, Widmanstätten, bimodal, lamellar and equiaxed microstructure. Bimodal and Widmanstätten structures exhibit a good-balance between strength and ductility. The microstructure of pulsed Nd:YAG welded Ti6Al4V was primarily a´ martensite, which showed the lowest ductility but not significantly high strength. A heat treatment at 950 followed by furnace cooling can transform the microstructure in the weld from a´ martensite structure into Widmanstätten structure.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)