996 resultados para large woody debris


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last glacial millennial climatic events (i.e. Dansgaard-Oeschger and Heinrich events) constitute outstanding case studies of coupled atmosphere-ocean-cryosphere interactions. Here, we investigate the evolution of sea-surface and subsurface conditions, in terms of temperature, salinity and sea ice cover, at very high-resolution (mean resolution between 55 and 155 years depending on proxies) during the 35-41 ka cal BP interval covering three Dansgaard-Oeschger cycles and including Heinrich event 4, in a new unpublished marine record, i.e. the MD99-2285 core (62.69°N; -3.57s°E). We use a large panel of complementary tools, which notably includes dinocyst-derived sea-ice cover duration quantifications. The high temporal resolution and multiproxy approach of this work allows us to identify the sequence of processes and to assess ocean-cryosphere interactions occurring during these periodic ice-sheet collapse events. Our results evidence a paradoxical hydrological scheme where (i) Greenland interstadials are marked by a homogeneous and cold upper water column, with intensive winter sea ice formation and summer sea ice melting, and (ii) Greenland and Heinrich stadials are characterized by a very warm and low saline surface layer with iceberg calving and reduced sea ice formation, separated by a strong halocline from a less warm and saltier subsurface layer. Our work also suggests that this stadial surface/subsurface warming started before massive iceberg release, in relation with warm Atlantic water advection. These findings thus support the theory that upper ocean warming might have triggered European ice-sheet destabilization. Besides, previous paleoceanographic studies conducted along the Atlantic inflow pathways close to the edge of European ice-sheets suggest that such a feature might have occurred in this whole area. Nonetheless, additional high resolution paleoreconstructions are required to confirm such a regional scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] We studied a large debris-avalanche deposit of Pleistocene age in the Tenteniguada Basin, Gran Canaria Island, Spain. This deposit, which is well preserved because it is mostly covered by basanite lava flows, has distinctive matrix and block facies, hummocky topography and internal structures typical of debris avalanches. However, neither syneruptive lavas nor some characteristic features of volcanic debris-avalanche deposits, such as a stratovolcano edifice or a horseshoe-shaped crater, are present. The occurrence of internal features characteristic of volcanic avalanche deposits could be attributed to the volcanic materials involved in the movement rather than to the triggering of the avalanche during a volcanic eruption.