906 resultados para land cover


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lena River Delta, situated in Northern Siberia (72.0 - 73.8° N, 122.0 - 129.5° E), is the largest Arctic delta and covers 29,000 km**2. Since natural deltas are characterised by complex geomorphological patterns and various types of ecosystems, high spatial resolution information on the distribution and extent of the delta environments is necessary for a spatial assessment and accurate quantification of biogeochemical processes as drivers for the emission of greenhouse gases from tundra soils. In this study, the first land cover classification for the entire Lena Delta based on Landsat 7 Enhanced Thematic Mapper (ETM+) images was conducted and used for the quantification of methane emissions from the delta ecosystems on the regional scale. The applied supervised minimum distance classification was very effective with the few ancillary data that were available for training site selection. Nine land cover classes of aquatic and terrestrial ecosystems in the wetland dominated (72%) Lena Delta could be defined by this classification approach. The mean daily methane emission of the entire Lena Delta was calculated with 10.35 mg CH4/m**2/d. Taking our multi-scale approach into account we find that the methane source strength of certain tundra wetland types is lower than calculated previously on coarser scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ignoring small-scale heterogeneities in Arctic land cover may bias estimates of water, heat and carbon fluxes in large-scale climate and ecosystem models. We investigated subpixel-scale heterogeneity in CHRIS/PROBA and Landsat-7 ETM+ satellite imagery over ice-wedge polygonal tundra in the Lena Delta of Siberia, and the associated implications for evapotranspiration (ET) estimation. Field measurements were combined with aerial and satellite data to link fine-scale (0.3 m resolution) with coarse-scale (upto 30 m resolution) land cover data. A large portion of the total wet tundra (80%) and water body area (30%) appeared in the form of patches less than 0.1 ha in size, which could not be resolved with satellite data. Wet tundra and small water bodies represented about half of the total ET in summer. Their contribution was reduced to 20% in fall, during which ET rates from dry tundra were highest instead. Inclusion of subpixel-scale water bodies increased the total water surface area of the Lena Delta from 13% to 20%. The actual land/water proportions within each composite satellite pixel was best captured with Landsat data using a statistical downscaling approach, which is recommended for reliable large-scale modelling of water, heat and carbon exchange from permafrost landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of sources and sinks of carbon over the land surface is dominated by changes in land use such as deforestation, reforestation, and agricultural management. Despite, the importance of land-use change in dominating long-term net terrestrial fluxes of carbon, estimates of the annual flux are uncertain relative to other terms in the global carbon budget. The interaction of the nitrogen cycle via atmospheric N inputs and N limitation with the carbon cycle contributes to the uncertain effect of land use change on terrestrial carbon uptake. This study uses two different land use datasets to force the geographically explicit terrestrial carbon-nitrogen coupled component of the Integrated Science Assessment Model (ISAM) to examine the response of terrestrial carbon stocks to historical LCLUC (cropland, pastureland and wood harvest) while accounting for changes in N deposition, atmospheric CO2 and climate. One of the land use datasets is based on satellite data (SAGE) while the other uses population density maps (HYDE), which allows this study to investigate how global LCLUC data construction can affect model estimated emissions. The timeline chosen for this study starts before the Industrial Revolution in 1765 to the year 2000 because of the influence of rising population and economic development on regional LCLUC. Additionally, this study evaluates the impact that resulting secondary forests may have on terrestrial carbon uptake. The ISAM model simulations indicate that uncertainties in net terrestrial carbon fluxes during the 1990s are largely due to uncertainties in regional LCLUC data. Also results show that secondary forests increase the terrestrial carbon sink but secondary tropical forests carbon uptake are constrained due to nutrient limitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portugal’s Northeast production of sheep and goats are based on the exploitation of landscape by-products such as spontaneous native vegetation and agriculture leftovers. Shepherds tend the flocks throughout grazing itineraries every day, crossing a mosaic of patches of varied land uses. During the journey, the shepherd acts together with the sheep and goats to select each patch in creating an ordered sequence of land uses. The focus of the research is on the land-use composition of the grazing itineraries; determinate how they depend on the patterns of the landscape mosaic. It is utilized a data set of 26 monthly herd’s itineraries, 13 of sheep and 13 of goats, to investigate the relationship of the land uses crossed by the flocks and the land uses of the landscape, evaluating the land-use preferences and selectivity of the sheep and goats. It is utilized the divergences in the time spent and distance travelled by the herds and the area of the land uses in the landscape, the chi-square test to relate the preferred land used and the season, and the discriminate analysis to distinguish the preferences and the selectivity of the herd of sheep and the herd of goats. The herds of the sheep and the goats presented different land-use preferences over the seasons and the discriminant analysis shows that they have different landscape preferences. The herd of sheep has the highest selectivity indexes for the annual irrigated crops, the agricultural complex systems and the agroforestry land uses. The highest selectivity indexes for the herd of goats were found for the deciduous forest, the agriculture with natural and semi-natural spaces and the shrublands land uses. It was concluded that the landscape management for sheep and goats herding has to be different: the agricultural land uses are essential to the flocks of sheep and the forest land uses are decisive to the flocks of goats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global land cover maps play an important role in the understanding of the Earth's ecosystem dynamic. Several global land cover maps have been produced recently namely, Global Land Cover Share (GLC-Share) and GlobeLand30. These datasets are very useful sources of land cover information and potential users and producers are many times interested in comparing these datasets. However these global land cover maps are produced based on different techniques and using different classification schemes making their interoperability in a standardized way a challenge. The Environmental Information and Observation Network (EIONET) Action Group on Land Monitoring in Europe (EAGLE) concept was developed in order to translate the differences in the classification schemes into a standardized format which allows a comparison between class definitions. This is done by elaborating an EAGLE matrix for each classification scheme, where a bar code is assigned to each class definition that compose a certain land cover class. Ahlqvist (2005) developed an overlap metric to cope with semantic uncertainty of geographical concepts, providing this way a measure of how geographical concepts are more related to each other. In this paper, the comparison of global land cover datasets is done by translating each land cover legend into the EAGLE bar coding for the Land Cover Components of the EAGLE matrix. The bar coding values assigned to each class definition are transformed in a fuzzy function that is used to compute the overlap metric proposed by Ahlqvist (2005) and overlap matrices between land cover legends are elaborated. The overlap matrices allow the semantic comparison between the classification schemes of each global land cover map. The proposed methodology is tested on a case study where the overlap metric proposed by Ahlqvist (2005) is computed in the comparison of two global land cover maps for Continental Portugal. The study resulted with the overlap spatial distribution among the two global land cover maps, Globeland30 and GLC-Share. These results shows that Globeland30 product overlap with a degree of 77% with GLC-Share product in Continental Portugal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding spatial patterns of land use and land cover is essential for studies addressing biodiversity, climate change and environmental modeling as well as for the design and monitoring of land use policies. The aim of this study was to create a detailed map of land use land cover of the deforested areas of the Brazilian Legal Amazon up to 2008. Deforestation data from and uses were mapped with Landsat-5/TM images analysed with techniques, such as linear spectral mixture model, threshold slicing and visual interpretation, aided by temporal information extracted from NDVI MODIS time series. The result is a high spatial resolution of land use and land cover map of the entire Brazilian Legal Amazon for the year 2008 and corresponding calculation of area occupied by different land use classes. The results showed that the four classes of Pasture covered 62% of the deforested areas of the Brazilian Legal Amazon, followed by Secondary Vegetation with 21%. The area occupied by Annual Agriculture covered less than 5% of deforested areas; the remaining areas were distributed among six other land use classes. The maps generated from this project ? called TerraClass - are available at INPE?s web site (http://www.inpe.br/cra/projetos_pesquisas/terraclass2008.php)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Montado decline has been reported since the end of the nineteenth century in southern Portugal and increased markedly during the 1980s. Consensual reports in the literature suggest that this decline is due to a number of factors, such as environmental constraints, forest diseases, inappropriate management, and socioeconomic issues. An assessment on the pattern of montado distribution was conducted to reveal how the extent of land management, environmental variables, and spatial factors contributed to montado area loss in southern Portugal from 1990 to 2006. A total of 14 independent variables, presumably related to montado loss, were grouped into three sets: environmental variables, land management variables, and spatial variables. From 1990 to 2006, approximately 90,054 ha disappeared in the montado area, with an estimated annual regression rate of 0.14 % year-1. Variation partitioning showed that the land management model accounted for the highest percentage of explained variance (51.8 %), followed by spatial factors (44.6 %) and environmental factors (35.5 %). These results indicate that most variance in the large-scale distribution of recent montado loss is due to land management, either alone or in combination with environmental and spatial factors. The full GAM model showed that different livestock grazing is one of the most important variables affecting montado loss. This suggests that optimum carrying capacity should decrease to 0.18–0.60 LU ha-1 for livestock grazing in montado under current ecological conditions in southern Portugal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the Paraíba do Sul river watershed , São Paulo state (PSWSP), Southeastern Brazil, in order to assess the land use and cover (LULC) and their implication s to the amount of carbon (C) stored in the forest cover between the years 1985 and 2015. Th e region covers a n area of 1,395,975 ha . We used images made by the Operational Land Imager (OLI) sensor (OLI/Landsat - 8) to produce mappings , and image segmentation techniques to produce vectors with homogeneous characteristics. The training samples and the samples used for classification and validation were collected from the segmented image. To quantify the C stocked in aboveground live biomass (AGLB) , we used an indirect method and applied literature - based reference values. The recovery of 205,690 ha of a secondary Native Forest (NF) after 1985 sequestered 9.7 Tg (Teragram) of C . Considering the whole NF area (455,232 ha), the amount of C accumulated al ong the whole watershed was 3 5 .5 Tg , and the whole Eucalyptus crop (EU) area (113,600 ha) sequester ed 4. 4 Tg of C. Thus, the total amount of C sequestered in the whole watershed (NF + EU) was 3 9 . 9 Tg of C or 1 45 . 6 Tg of CO 2 , and the NF areas were responsible for the large st C stock at the watershed (8 9 %). Therefore , the increase of the NF cover contribut es positively to the reduction of CO 2 concentration in the atmosphere, and Reducing Emissions from Deforestation and Forest Degradation (REDD + ) may become one of the most promising compensation mechanisms for the farmers who increased forest cover at their farms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Roads and topography can determine patterns of land use and distribution of forest cover, particularly in tropical regions. We evaluated how road density, land use, and topography affected forest fragmentation, deforestation and forest regrowth in a Brazilian Atlantic Forest region near the city of Sao Paulo. We mapped roads and land use/land cover for three years (1962, 1981 and 2000) from historical aerial photographs, and summarized the distribution of roads, land use/land cover and topography within a grid of 94 non-overlapping 100 ha squares. We used generalized least squares regression models for data analysis. Our models showed that forest fragmentation and deforestation depended on topography, land use and road density, whereas forest regrowth depended primarily on land use. However, the relationships between these variables and forest dynamics changed in the two studied periods; land use and slope were the strongest predictors from 1962 to 1981, and past (1962) road density and land use were the strongest predictors for the following period (1981-2000). Roads had the strongest relationship with deforestation and forest fragmentation when the expansions of agriculture and buildings were limited to already deforested areas, and when there was a rapid expansion of development, under influence of Sao Paulo city. Furthermore, the past(1962)road network was more important than the recent road network (1981) when explaining forest dynamics between 1981 and 2000, suggesting a long-term effect of roads. Roads are permanent scars on the landscape and facilitate deforestation and forest fragmentation due to increased accessibility and land valorization, which control land-use and land-cover dynamics. Topography directly affected deforestation, agriculture and road expansion, mainly between 1962 and 1981. Forest are thus in peril where there are more roads, and long-term conservation strategies should consider ways to mitigate roads as permanent landscape features and drivers facilitators of deforestation and forest fragmentation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Can social inequality be seen imprinted in a forest landscape? We studied the relationship between land holding, land use, and inequality in a peasant community in the Peruvian Amazon where farmers practice swidden-fallow cultivation. Longitudinal data on land holding, land use, and land cover were gathered through field-level surveys (n = 316) and household interviews (n = 51) in 1994/1995 and 2007. Forest cover change between 1965 and 2007 was documented through interpretation of air photos and satellite imagery. We introduce the concept of “land use inequality” to capture differences across households in the distribution of forest fallowing and orchard raising as key land uses that affect household welfare and the sustainability of swidden-fallow agriculture. We find that land holding, land use, and forest cover distribution are correlated and that the forest today reflects social inequality a decade prior. Although initially land-poor households may catch up in terms of land holdings, their use and land cover remain impoverished. Differential land use investment through time links social inequality and forest cover. Implications are discussed for the study of forests as landscapes of inequality, the relationship between social inequality and forest composition, and the forest-poverty nexus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A method is presented for the development of a regional Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper plus (ETM+) spectral greenness index, coherent with a six-dimensional index set, based on a single ETM+ spectral image of a reference landscape. The first three indices of the set are determined by a polar transformation of the first three principal components of the reference image and relate to scene brightness, percent foliage projective cover (FPC) and water related features. The remaining three principal components, of diminishing significance with respect to the reference image, complete the set. The reference landscape, a 2200 km2 area containing a mix of cattle pasture, native woodland and forest, is located near Injune in South East Queensland, Australia. The indices developed from the reference image were tested using TM spectral images from 19 regionally dispersed areas in Queensland, representative of dissimilar landscapes containing woody vegetation ranging from tall closed forest to low open woodland. Examples of image transformations and two-dimensional feature space plots are used to demonstrate image interpretations related to the first three indices. Coherent, sensible, interpretations of landscape features in images composed of the first three indices can be made in terms of brightness (red), foliage cover (green) and water (blue). A limited comparison is made with similar existing indices. The proposed greenness index was found to be very strongly related to FPC and insensitive to smoke. A novel Bayesian, bounded space, modelling method, was used to validate the greenness index as a good predictor of FPC. Airborne LiDAR (Light Detection and Ranging) estimates of FPC along transects of the 19 sites provided the training and validation data. Other spectral indices from the set were found to be useful as model covariates that could improve FPC predictions. They act to adjust the greenness/FPC relationship to suit different spectral backgrounds. The inclusion of an external meteorological covariate showed that further improvements to regional-scale predictions of FPC could be gained over those based on spectral indices alone.