865 resultados para kernel estimator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Difference-in-Difference (DiD) methods are being increasingly used to analyze the impact of mergers on pricing and other market equilibrium outcomes. Using evidence from an exogenous merger between two retail gasoline companies in a specific market in Spain, this paper shows how concentration did not lead to a price increase. In fact, the conjectural variation model concludes that the existence of a collusive agreement before and after the merger accounts for this result, rather than the existence of efficient gains. This result may explain empirical evidence reported in the literature according to which mergers between firms do not have significant effects on prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new kernel estimation of the cumulative distribution function based on transformation and on bias reducing techniques. We derive the optimal bandwidth that minimises the asymptotic integrated mean squared error. The simulation results show that our proposed kernel estimation improves alternative approaches when the variable has an extreme value distribution with heavy tail and the sample size is small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defatted Brazil nut kernel flour, a rich source of high quality proteins, is presently being utilized in the formulation of animal feeds. One of the possible ways to improve its utilization for human consumption is through improvement in its functional properties. In the present study, changes in some of the functional properties of Brazil nut kernel globulin were evaluated after acetylation at 58.6, 66.2 and 75.3% levels. The solubility of acetylated globulin was improved above pH 6.0 but was reduced in the pH range of 3.0-4.0. Water and oil absorption capacity, as well as the viscosity increased with increase in the level of acetylation. Level of modification also influenced the emulsifying capacity: decreased at pH 3.0, but increased at pH 7.0 and 9.0. Highest emulsion activity (approximately 62.2%) was observed at pH 3.0 followed by pH 9.0 and pH 7.0 and least (about 11.8%) at pH 5.0. Emulsion stability also followed similar behavior as that of emulsion activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate and model the water absorption process by corn kernels with different levels of mechanical damage Corn kernels of AG 1510 variety with moisture content of 14.2 (% d.b.) were used. Different mechanical damage levels were indirectly evaluated by electrical conductivity measurements. The absorption process was based on the industrial corn wet milling process, in which the product was soaked with a 0.2% sulfur dioxide (SO2) solution and 0.55% lactic acid (C3H6O3) in distilled water, under controlled temperatures of 40, 50, 60, and 70 ºC and different mechanical damage levels. The Peleg model was used for the analysis and modeling of water absorption process. The conclusion is that the structural changes caused by the mechanical damage to the corn kernels influenced the initial rates of water absorption, which were higher for the most damaged kernels, and they also changed the equilibrium moisture contents of the kernels. The Peleg model was well adjusted to the experimental data presenting satisfactory values for the analyzed statistic parameters for all temperatures regardless of the damage level of the corn kernels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid lipid particles have been investigated by food researchers due to their ability to enhance the incorporation and bioavailability of lipophilic bioactives in aqueous formulations. The objectives of this study were to evaluate the physicochemical stability and digestibility of lipid microparticles produced with tristearin and palm kernel oil. The motivation for conducting this study was the fact that mixing lipids can prevent the expulsion of the bioactive from the lipid core and enhance the digestibility of lipid structures. The lipid microparticles containing different palm kernel oil contents were stable after 60 days of storage according to the particle size and zeta potential data. Their calorimetric behavior indicated that they were composed of a very heterogeneous lipid matrix. Lipid microparticles were stable under various conditions of ionic strength, sugar concentration, temperature, and pH. Digestibility assays indicated no differences in the release of free fatty acids, which was approximately 30% in all analises. The in vitro digestibility tests showed that the amount of palm kernel in the particles did not affect the percentage of lipolysis, probably due to the high amount of surfactants used and/or the solid state of the microparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates theoretical properties of symmetric and anti-symmetric kernels. First chapters give an overview of the theory of kernels used in supervised machine learning. Central focus is on the regularized least squares algorithm, which is motivated as a problem of function reconstruction through an abstract inverse problem. Brief review of reproducing kernel Hilbert spaces shows how kernels define an implicit hypothesis space with multiple equivalent characterizations and how this space may be modified by incorporating prior knowledge. Mathematical results of the abstract inverse problem, in particular spectral properties, pseudoinverse and regularization are recollected and then specialized to kernels. Symmetric and anti-symmetric kernels are applied in relation learning problems which incorporate prior knowledge that the relation is symmetric or anti-symmetric, respectively. Theoretical properties of these kernels are proved in a draft this thesis is based on and comprehensively referenced here. These proofs show that these kernels can be guaranteed to learn only symmetric or anti-symmetric relations, and they can learn any relations relative to the original kernel modified to learn only symmetric or anti-symmetric parts. Further results prove spectral properties of these kernels, central result being a simple inequality for the the trace of the estimator, also called the effective dimension. This quantity is used in learning bounds to guarantee smaller variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce mémoire porte sur la présentation des estimateurs de Bernstein qui sont des alternatives récentes aux différents estimateurs classiques de fonctions de répartition et de densité. Plus précisément, nous étudions leurs différentes propriétés et les comparons à celles de la fonction de répartition empirique et à celles de l'estimateur par la méthode du noyau. Nous déterminons une expression asymptotique des deux premiers moments de l'estimateur de Bernstein pour la fonction de répartition. Comme pour les estimateurs classiques, nous montrons que cet estimateur vérifie la propriété de Chung-Smirnov sous certaines conditions. Nous montrons ensuite que l'estimateur de Bernstein est meilleur que la fonction de répartition empirique en terme d'erreur quadratique moyenne. En s'intéressant au comportement asymptotique des estimateurs de Bernstein, pour un choix convenable du degré du polynôme, nous montrons que ces estimateurs sont asymptotiquement normaux. Des études numériques sur quelques distributions classiques nous permettent de confirmer que les estimateurs de Bernstein peuvent être préférables aux estimateurs classiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most adaptive linearization circuits for the nonlinear amplifier have a feedback loop that returns the output signal oj'tne eunplifier to the lineurizer. The loop delay of the linearizer most be controlled precisely so that the convergence of the linearizer should be assured lot this Letter a delay control circuit is presented. It is a delay lock loop (ULL) with it modified early-lute gate and can he easily applied to a DSP implementation. The proposed DLL circuit is applied to an adaptive linearizer with the use of a polynomial predistorter, and the simulalion for a 16-QAM signal is performed. The simulation results show that the proposed DLL eliminates the delay between the reference input signal and the delayed feedback signal of the linearizing circuit perfectly, so that the predistorter polynomial coefficients converge into the optimum value and a high degree of linearization is achieved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.