105 resultados para kaurane diterpenes
Resumo:
The seasonal variations in the chemical composition of Brazilian propolis, collected by two bee subspecies, Africanized Apis mellifera and European Apis mellifera ligustica, have been investigated by GC and GC-MS. The main components of the samples were phenolic compounds, especially cinnamic acid derivatives, the only exception being the autumn sample from Apis mellifera ligustica, where diterpenes predominated. In propolis from both subspecies, diterpenes appeared in summer and reached maximum percentage in autumn, but were absent during the other seasons. The results obtained indicated that both bee subspecies collect propolis from among the same group of plants, and that there are at least two important plant sources, but these remain unidentified.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Many people who live in the cerrado regions use plant species for therapeutic purposes. However, due to intensive extraction of some species, native botanical populations are at risk of disappearing or suffering a dramatic decrease, such as, for instance, individuals of the Lychnophora genus. This has 24 species distributed into the categories vulnerable, endangered, critically endangered, and possibly extinct. These individuals are known in folk medicine as “arnica” and their leaves and flowers are commonly used as anti-inflammatory, analgesic, and healing agents. The chemical profile of the genus is characterized by the presence of sesquiterpene lactones, sesquiterpenes, diterpenes, triterpenes, flavonoids, steroids, polyacetylenes, and caryophyllene derivatives which also have lignans with analgesic activity. Studies with Lychnophora species show significant results with regard to their biological activities against Leishmania amazonensis, Staphylococcus aureus, and Tripanosoma cruzi. Therefore, this study aimed to perform a survey of the morphology, chemical composition, and biological activity, as well as the use and current conservation status of the Lychnophora genus in Brazil.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Labdane diterpenes exhibit important bioactivities such as cardiovascular effects in rats as well as effects in the treatment of autoimmune diseases and Alzheimer syndrome. Recently, the labdane diterpenes ent-13-epi-manoil oxide, ribenone and ribenol were isolated from Croton palanostigma. The computational method DFT/B3LYP/cc-pVDZ was used to optimize the structures of these diterpenes and to calculate infrared data. Chemical shifts (δH and δC) of the minimum energy structures (local minimum) were calculated and compared with the experimental data. Comparison of the NMR data by simple linear regression (SLR) showed satisfactory statistical results with a correlation coefficient (R2) and predictive ability (Q2) of over 98%. The predicted NMR data were used to confirm the δH values that have not been published.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Different species of Laurencia have proven to be a rich source of natural products yielding interesting bioactive halogenated secondary metabolites, such as terpenoids and acetogenins. It is shown that such compounds are accumulated in the spherical, reniform to claviform refractive inclusions called corps en cerise (CC), which are intensively osmiophilic and located mainly in the cortical cells of the thalli and also in trichoblast cells. Up to now, it was believed that CC were present only in these two kinds of cells. Recently, however, a species of Laurencia, L. marilzae, with CC in all cells of the thallus, i.e., cortical, medullary, including the pericentral and axial cells, as well as in the trichoblasts, was described from the Canary Islands, and subsequently also reported to Brazil and Mexico. Within the Laurencia complex, only Laurencia species produce CC. Since the species of Laurencia are targets of interest for the prospection of bioactive substances due to their potential antibacterial, antifungal, anticholinesterasic, antileishmanial, cytotoxic, and antioxidant activities, the present paper carries out a comparative analysis of the corps en cerise in several species of Laurencia from the Atlantic Ocean to obtain basic information that can support natural product bioprospection projects. Our results show that the number and size of the CC are constant within a species, independent of the geographical distribution, corroborating their use for taxonomical purposes to differentiate groups of species that present a lower number from those that have a higher number. In this regard, there was a tendency for the number of CC to be higher in some species of Laurencia from the Canary Islands. The presence of CC can also be used to distinguish species in which these organelles are present in all cells of the thallus from those in which CC are restricted to the cortical cells. Among the species analyzed, L. viridis displayed the most varied secondary metabolites composition, such as sesquiterpenes, diterpenes, triterpenes, all of which showed potent antiviral, cytotoxic, and antitumoral activities, including protein phosphatase type 2A (PP2A) inhibitory effects.
Resumo:
Chemical study of three medicinal plants: from leaves of Piper renitens (Miq.) Yunck, Piperaceae, and Siparuna guianensis Aubl., Siparunaceae, and from flowers of Alternanthera brasiliana (L.) Kuntze, Amaranthaceae, resulted in isolation of nine compounds: three steroids, β-sitosterol, stigmasterol from P. renitens and sitosterol-3-O-β-D-glucopyranoside from A. brasiliana, the diterpene kaurane ent-kauran-16α,17-diol from P. renitens, two derivatives kaempferol-methylether, kumatakenine (kaempferol-3,7-dimethylether) and kaempferol-3,7,3'-trimethylether from S. guianensis and three flavones, crysoeriol (5,7,4'-trihydroxy-3'-methoxyflavone), tricin (5,7,4'-trihydroxy-3',5'-dimethoxyflavone) and 7-O-β-D-glucopyranoside-5,4'-dihydroxy-3'-methoxyflavone from A. brasiliana. Compounds structures were determinate using 1D and 2D ¹H NMR and 13C spectral data, mass and IR spectra, comparing with literature data.
Resumo:
Grand fir (Abies grandis Lindl.) has been developed as a model system for the study of wound-induced oleoresinosis in conifers as a response to insect attack. Oleoresin is a roughly equal mixture of turpentine (85% monoterpenes [C10] and 15% sesquiterpenes [C15]) and rosin (diterpene [C20] resin acids) that acts to seal wounds and is toxic to both invading insects and their pathogenic fungal symbionts. The dynamic regulation of wound-induced oleoresin formation was studied over 29 d at the enzyme level by in vitro assay of the three classes of synthases directly responsible for the formation of monoterpenes, sesquiterpenes, and diterpenes from the corresponding C10, C15, and C20 prenyl diphosphate precursors, and at the gene level by RNA-blot hybridization using terpene synthase class-directed DNA probes. In overall appearance, the shapes of the time-course curves for all classes of synthase activities are similar, suggesting coordinate formation of all of the terpenoid types. However, closer inspection indicates that the monoterpene synthases arise earlier, as shown by an abbreviated time course over 6 to 48 h. RNA-blot analyses indicated that the genes for all three classes of enzymes are transcriptionally activated in response to wounding, with the monoterpene synthases up-regulated first (transcripts detectable 2 h after wounding), in agreement with the results of cell-free assays of monoterpene synthase activity, followed by the coordinately regulated sesquiterpene synthases and diterpene synthases (transcription beginning on d 3–4). The differential timing in the production of oleoresin components of this defense response is consistent with the immediate formation of monoterpenes to act as insect toxins and their later generation at solvent levels for the mobilization of resin acids responsible for wound sealing.
Resumo:
The absolute stereochemistry of amphilectene metabolites from Cribochalina sp. has been revised by a detailed NMR spectroscopic study of the Mosher ester derivatives of a related alcohol. The relative stereochemistry of the previously described amphilectenes has been reinvestigated and reassigned on the basis of the X-ray structural analysis carried out on one of them. The structure of a new amphilectene metabolite, which is an isothiocyanato analogue is also presented. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Construction of the 15-O-methylcyclovibsanin B core was achieved expediently in eight linear steps utilizing a biogenetically modeled approach.
Resumo:
Studies detailing synthetic approaches to a variety of biosynthetically related vibsanin-type diterpenes (i.e. vibsanin E, 15-O-methylcyclovibsanin B, 3-hydroxy-vibsanin E, furano-vibsanin A, and 3-O-methylfuranovibsanin A) are discussed. Biogenetically modelled approaches are coupled with an in-vestigation of classical and modern six- to seven-membered ring-expansion protocols, which gain access to the central core of these natural products. (c) Wiley-VCH Verlag GmbH & Co.
Resumo:
In this work it were developed synthetic and theoretical studies for clerodane-type diterpenes obtained from Croton cajucara Benth which represents one of the most important medicinal plant of the Brazil amazon region. Specifically, the majoritary biocompound 19-nor-clerodane trans-dehydrocrotonin (t-DCTN) isolated from the bark of this Croton, was used as target molecule. Semi-synthetic derivatives were obtained from t-DCTN by using the followed synthetic procedures: 1) catalytic reduction with H2, 2) reduction using NaBH4 and 3) reduction using NaBH4/CeCl3. The semi-synthetic 19-nor-furan-clerodane alcohol-type derivatives were denominated such as t-CTN, tCTN-OL, t-CTN-OL, t-DCTN-OL, t-DCTN-OL, being all of them characterized by NMR. The furan-clerodane alcohol derivatives t-CTN-OL and tCTN-OL were obtained form the semi-synthetic t-CTN, which can be isolated from the bark of C. cajucara. A theoretical protocol (DFT/B3LYP) involving the prevision of geometric and magnetic properties such as bond length and angles, as well as chemical shifts and coupling constants, were developed for the target t-DCTN in which was correlated NMR theoretical data with structural data, with satisfactory correlation with NMR experimental data (coefficients ranging from 0.97 and 0.99) and X-ray diffraction data. This theoretical methodology was also validated for all semi-synthetic derivatives described in this work. In addition, topological data from the Quantum Theory of Atoms in Molecules (QTAIM) showed the presence of H-H and (C)O--H(C) intramolecular stabilized interactions types for t-DCTN e t-CTN, contributing to the understanding of the different reactivity of this clerodanes in the presence of NaBH4.
Resumo:
Purpose: To evaluate the antibacterial and cytotoxic activities of the secondary metabolites of Lobophytum sp. Methods: Maceration with methanol: chloroform (1:1) was applied to extract the coral material. Chromatographic and spectroscopic techniques were employed for fractionation, isolation and elucidation of pure compounds. Antibacterial activities were performed by well diffusion method against three Gram-positive and four Gram-negative bacteria. Brine shrimp lethality test was employed to predict toxicity, while antitumor activity were tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) method against Ehrlich carcinoma cells. Results: Four sesquiterpenes, one cembranoid type diterpenes and two steroids were isolated. 1 exhibited significant antibacterial activity against four tested bacteria (P. aeruginosa, S. aureus, S. epidermis, and S. pneumonia) with MIC value of 15 μg/mL. Moreover, 1 showed high diameter zone of inhibition ranging from 16 - 18 mm against test bacteria. Compounds 4 and 5 displayed moderate antibacterial activity against all test bacteria with inhibition zone diameter (IZD) ranging from 11 – 15 mm and MIC values of 30 μg/mL. 2, 3, 6 and 7 exhibited weak antibacterial activity (IZD, 7 - 11 mm; MIC ≥ 30 μg/mL). In addition, only diterpene compound (4) showed high toxicity against A. Salina and antitumor activity against Erhlich carcinoma cells with the LD50 of 25 and 50 μg/mL, respectively. Conclusion: This study reveals the strong antibacterial activity of sesquiterpene alismol (1) and the potential antibacterial and antitumor activity of cembranoid type diterpene, cembrene A (4).
Resumo:
Biofilm bacteria are more resistant to antibiotics than planktonic cells. Propolis possesses antimicrobial activity. Generally, nanoparticles containing heavy metals possess antimicrobial and antibiofilm properties. In this study, the ability of adherence of Methicillin Resistant Strains of Staphylococcus aureus (MRSA) to catheters treated with magnetite nanoparticles (MNPs), produced by three methods and functionalized with oleic acid and a hydro-alcoholic extract of propolis from Morocco, was evaluated. The chemical composition of propolis was established by gas chromatography mass spectrometry (GC-MS), and the fabricated nanostructures characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Mossbauer spectroscopy and Fourrier transform infrared spectroscopy (FTIR). The capacity for impairing biofilm formation was dependent on the strain, as well as on the mode of production of MNPs. The co-precipitation method of MNPs fabrication using Fe(3+) and Na₂SO₃ solution and functionalized with oleic acid and propolis was the most effective in the impairment of adherence of all MRSA strains to catheters (p < 0.001). The adherence of the strain MRSA16 was also significantly lower (p < 0.001) when the catheters were treated with the hybrid MNPs with oleic acid produced by a hydrothermal method. The anti-MRSA observed can be attributed to the presence of benzyl caffeate, pinocembrin, galangin, and isocupressic acid in propolis extract, along with MNPs. However, for MRSA16, the impairment of its adherence on catheters may only be attributed to the hybrid MNPs with oleic acid, since very small amount, if any at all of propolis compounds were added to the MNPs.