982 resultados para joint motion
Resumo:
BACKGROUND: This study investigated the effect of socioeconomic deprivation on preoperative disease and outcome following unicompartmental knee replacement (UKR).
METHODS: 307 Oxford UKRs implanted between 2008 and 2013 under the care of one surgeon using the same surgical technique were analysed. Deprivation was quantified using the Northern Ireland Multiple Deprivation Measure. Preoperative disease severity and postoperative outcome were measured using the Oxford Knee Score (OKS).
RESULTS: There was no difference in preoperative OKS between deprivation groups. Preoperative knee range of motion (ROM) was significantly reduced in more deprived patients with 10° less ROM than least deprived patients. Postoperatively there was no difference in OKS improvement between deprivation groups (p=0.46), with improvements of 19.5 and 21.0 units in the most and least deprived groups respectively. There was no significant association between deprivation and OKS improvement on unadjusted or adjusted analysis. Preoperative OKS, Short Form 12 mental component score and length of stay were significant independent predictors of OKS improvement. A significantly lower proportion of the most deprived group (15%) reported being able to walk an unlimited distance compared to the least deprived group (41%) one year postoperatively.
CONCLUSION: More deprived patients can achieve similar improvements in OKS to less deprived patients following UKR.
LEVEL OF EVIDENCE: 2b - retrospective cohort study of prognosis.
Resumo:
Childhood obesity is commonly associated with a pes planus foot type and altered lower limb joint function during walking. However, limited information has been reported on dynamic intersegment foot motion with the level of obesity in children. The aim of this study was to explore the relationships between intersegment foot motion during gait and body fat in boys age 7 to 11 years. Fat mass was measured in fifty-five boys using air displacement plethysmography. Three-dimensional gait analysis was conducted on the right foot of each participant using the 3DFoot model to capture angular motion of the shank, calcaneus, midfoot and metatarsals. Two multivariate statistical techniques were employed; principle component analysis reduced the multidimensional nature of gait analysis, and multiple linear regression analysis accounted for potential confounding factors. Higher fat mass predicted greater plantarflexion of the calcaneus during the first half and end of stance phase and at the end of swing phase. Greater abduction of the calcaneus throughout stance and swing was predicted by greater fat mass. At the midfoot, higher fat mass predicted greater dorsiflexion and eversion throughout the gait cycle. The findings present novel information on the relationships between intersegment angular motion of the foot and body fat in young boys. The data indicates a more pronated foot type in boys with greater body fat. These findings have clinical implications for pes planus and a predisposition for pain and discomfort during weight bearing activities potentially reducing motivation in obese children to be physically active.
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper presents a new technique to solve the inverse kinematics problem of redundant manipulators, which uses a fractional differential of order α to control the joint positions. Two performance measures are defined to examine the strength and weakness of the proposed method. The positional error index measures the precision of the manipulator's end-effector at the target position. The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute repetitive trajectories in the operational workspace. Redundant and hyper-redundant planar manipulators reveal that it is possible to choose in a large range of possible values of α in order to get repetitive trajectories in the joint space.
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close.
Resumo:
People with motion-impairments can often have difficulty with accurate control of standard pointing devices for computer input. The nature of the difficulties may vary, so to be most effective, methods of assisting cursor control must be suited to each user's needs. The work presented here involves a study of cursor trajectories as a means of assessing the requirements of motion-impaired computer users. A new cursor characteristic is proposed that attempts to capture difficulties with moving the cursor in a smooth trajectory. A study was conducted to see if haptic tunnels could improve performance in "point and click" tasks. Results indicate that the tunnels reduced times to target for those users identified by the new characteristic as having the most difficulty moving in a smooth trajectory. This suggests that cursor characteristics have potential applications in performing assessments of a user's cursor control capabilities which can then be used to determine appropriate methods of assistance.
Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach
Resumo:
Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.
Resumo:
The study of articular sounds using a computerized system (SonoPAK) in patients with temporomandibular disorders (TMD) of inflammatory origin revealed an increase of vibratory energy when compared to asymptomatic individuals. The following conclusions were reached: 1. The amount of vibratory energy registered in these patients ranged from 8.50 to 57.61 Hz. The major vibrations occurred in the middle of the mandibular opening cycle; 2. The mean vibratory energy measured at less than 300 Hz was between 5.70 and 48.64 Hz and at higher than 300 Hz was between 3.70 and 8.99 Hz; 3. The peak amplitude in the patients with inflammation ranged from 0.35 to 3.96 Pascal and the peak of frequency from 83.20 to 120.20 Hz.
Resumo:
Occlusion is a predisposing factor for Temporomandibular Dysfunctions (TMD) of the joint, whose first sign and/or symptom is usually joint sound. To verify the effect of occlusion on joint sounds, temporomandibular joints (TMJ) were analyzed in 78 asymptomatic individuals with various dental conditions. Electrosonography was used to determine the intensity of the vibration in the temporomandibular joint (TMJ) on opening and closing the mouth. Transducers (piezoelectric accelerometer) were placed on the right and left joints. Results were tabled and analyzed using the Kruskal-Wallis test (a=0.05). It was concluded that TMJ vibration in partly edentulous individuals from Kennedy classes I, II and III is statistically higher than in dentate and fully edentulous subjects.
Resumo:
Purpose. Isokinetic tests are often applied to assess muscular strength and EMG activity, however the specific ranges of motion used in testing (fully flexed or extended positions) might be constrictive and/or be painful for patients with injuries or under-going rehabilitation. The aim of this study was to examine the effects of different ranges of motion (RoM) when determining maximal EMG during isokinetic knee flexion and extension with different types of contractions and velocities. Methods. Eighteen males had EMG activity recorded on the vastus lateralis, vastus medialis, semitendinosus and biceps femoris muscles during five maximal isokinetic concentric and eccentric contractions for the knee flexors and extensors at 60° • s -1 and 180° • s -1. The root mean square of EMG was calculated at three different ranges of motion: (1) a full range of motion (90°-20° [0° = full knee extension]); (2) a range of motion of 20° (between 60°-80° and 40°-60° for knee extension and flexion, respectively) and (3) at a 10° interval around the angle where peak torque is produced. EMG measurements were statistically analyzed (ANOVA) to test for the range of motion, contraction velocity and contraction speed effects. Coefficients of variation and Pearson's correlation coefficients were also calculated among the ranges of motion. Results. Predominantly similar (p > 0.05) and well-correlated EMG results (r > 0.7, p ≤ 0.001) were found among the ranges of motion. However, a lower coefficient of variation was found for the full range of motion, while the 10° interval around peak torque at 180° • s -1 had the highest coefficient, regardless of the type of contraction. Conclusions. Shorter ranges of motion at around the peak torque angle provides a reliable indicator when recording EMG activity during maximal isokinetic parameters. It may provide a safer alternative when testing patients with injuries or undergoing rehabilitation.
Resumo:
STUDY DESIGN. Observational cohort study. OBJECTIVE. To investigate spinal coordination during preferred and fast speed walking in pain-free subjects with and without a history of recurrent low back pain (LBP). SUMMARY OF BACKGROUND DATA. Dynamic motion of the spine during walking is compromised in the presence of back pain (LBP), but its analysis often presents some challenges. The coexistence of significant symptoms may change gait because of pain or adaptation of the musculoskeletal structures or both. A history of LBP without the overlay of a current symptomatic episode allows a better model in which to explore the impact on spinal coordination during walking. METHODS. Spinal and lower limb segmental motions were tracked using electromagnetic sensors. Analyses were conducted to explore the synchrony and spatial coordination of the segments and to compare the control and subjects with LBP. RESULTS. We found no apparent differences between the groups for either overall amplitude of motion or most indicators of coordination in the lumbar region; however, there were significant postural differences in the mid-stance phase and other indicators of less phase locking in controls compared with subjects with LBP. The lower thoracic spinal segment was more affected by the history of back pain than the lumbar segment. CONCLUSION. Although small, there were indicators that alterations in spinal movement and coordination in subjects with recurrent LBP were due to adaptive changes rather than the presence of pain. © 2013, Lippincott Williams & Wilkins.
Resumo:
The American Academy of Orofacial Pain (AAOP) defines ankylosis of the temporomandibular joint (TMJ) as a restriction of movements due to intracapsular fibrous adhesions, fibrous changes in capsular ligaments (fibrous-ankylosis) and osseous mass formation resulting in the fusion of the articular components (osseous-ankylosis). The clinical features of the fibrous-ankylosis are severely limited mouth-opening capacity (limited range of motion during the opening), usually no pain and no joint sounds, marked deflection to the affected side and marked limitation of movement to the contralateral side. A variety of factors may cause TMJ ankylosis, such as trauma, local and systemic inflammatory conditions, neoplasms and TMJ infection. Rheumatoid arthritis (RA) is one of the systemic inflammatory conditions that affect the TMJ and can cause ankylosis. The aim of this study is to present a case of a female patient diagnosed with bilateral asymptomatic fibrous-ankylosis of the TMJ associated with asymptomatic rheumatoid arthritis. This case illustrates the importance of a comprehensive clinical examination and correct diagnosis of an unusual condition causing severe mouth opening limitation.
Resumo:
In case of severe osteoarthritis at the knee causing pain, deformity, and loss of stability and mobility, the clinicians consider that the substitution of these surfaces by means of joint prostheses. The objectives to be pursued by this surgery are: complete pain elimination, restoration of the normal physiological mobility and joint stability, correction of all deformities and, thus, of limping. The knee surgical navigation systems have bee developed in computer-aided surgery in order to improve the surgical final outcome in total knee arthroplasty. These systems provide the surgeon with quantitative and real-time information about each surgical action, like bone cut executions and prosthesis component alignment, by mean of tracking tools rigidly fixed onto the femur and the tibia. Nevertheless, there is still a margin of error due to the incorrect surgical procedures and to the still limited number of kinematic information provided by the current systems. Particularly, patello-femoral joint kinematics is not considered in knee surgical navigation. It is also unclear and, thus, a source of misunderstanding, what the most appropriate methodology is to study the patellar motion. In addition, also the knee ligamentous apparatus is superficially considered in navigated total knee arthroplasty, without taking into account how their physiological behavior is altered by this surgery. The aim of the present research work was to provide new functional and biomechanical assessments for the improvement of the surgical navigation systems for joint replacement in the human lower limb. This was mainly realized by means of the identification and development of new techniques that allow a thorough comprehension of the functioning of the knee joint, with particular attention to the patello-femoral joint and to the main knee soft tissues. A knee surgical navigation system with active markers was used in all research activities presented in this research work. Particularly, preliminary test were performed in order to assess the system accuracy and the robustness of a number of navigation procedures. Four studies were performed in-vivo on patients requiring total knee arthroplasty and randomly implanted by means of traditional and navigated procedures in order to check for the real efficacy of the latter with respect to the former. In order to cope with assessment of patello-femoral joint kinematics in the intact and replaced knees, twenty in-vitro tests were performed by using a prototypal tracking tool also for the patella. In addition to standard anatomical and articular recommendations, original proposals for defining the patellar anatomical-based reference frame and for studying the patello-femoral joint kinematics were reported and used in these tests. These definitions were applied to two further in-vitro tests in which, for the first time, also the implant of patellar component insert was fully navigated. In addition, an original technique to analyze the main knee soft tissues by means of anatomical-based fiber mappings was also reported and used in the same tests. The preliminary instrumental tests revealed a system accuracy within the millimeter and a good inter- and intra-observer repeatability in defining all anatomical reference frames. In in-vivo studies, the general alignments of femoral and tibial prosthesis components and of the lower limb mechanical axis, as measured on radiographs, was more satisfactory, i.e. within ±3°, in those patient in which total knee arthroplasty was performed by navigated procedures. As for in-vitro tests, consistent patello-femoral joint kinematic patterns were observed over specimens throughout the knee flexion arc. Generally, the physiological intact knee patellar motion was not restored after the implant. This restoration was successfully achieved in the two further tests where all component implants, included the patellar insert, were fully navigated, i.e. by means of intra-operative assessment of also patellar component positioning and general tibio-femoral and patello-femoral joint assessment. The tests for assessing the behavior of the main knee ligaments revealed the complexity of the latter and the different functional roles played by the several sub-bundles compounding each ligament. Also in this case, total knee arthroplasty altered the physiological behavior of these knee soft tissues. These results reveal in-vitro the relevance and the feasibility of the applications of new techniques for accurate knee soft tissues monitoring, patellar tracking assessment and navigated patellar resurfacing intra-operatively in the contest of the most modern operative techniques. This present research work gives a contribution to the much controversial knowledge on the normal and replaced of knee kinematics by testing the reported new methodologies. The consistence of these results provides fundamental information for the comprehension and improvements of knee orthopedic treatments. In the future, the reported new techniques can be safely applied in-vivo and also adopted in other joint replacements.
Resumo:
Knowledge on how ligaments and articular surfaces guide passive motion at the human ankle joint complex is fundamental for the design of relevant surgical treatments. The dissertation presents a possible improvement of this knowledge by a new kinematic model of the tibiotalar articulation. In this dissertation two one-DOF spatial equivalent mechanisms are presented for the simulation of the passive motion of the human ankle joint: the 5-5 fully parallel mechanism and the fully parallel spherical wrist mechanism. These mechanisms are based on the main anatomical structures of the ankle joint, namely the talus/calcaneus and the tibio/fibula bones at their interface, and the TiCaL and CaFiL ligaments. In order to show the accuracy of the models and the efficiency of the proposed procedure, these mechanisms are synthesized from experimental data and the results are compared with those obtained both during experimental sessions and with data published in the literature. Experimental results proved the efficiency of the proposed new mechanisms to simulate the ankle passive motion and, at the same time, the potentiality of the mechanism to replicate the ankle’s main anatomical structures quite well. The new mechanisms represent a powerful tool for both pre-operation planning and new prosthesis design.