913 resultados para ion-exchange chromatography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Date Declassified: September 23, 1955."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract AT(49-1)-535."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of the electrolytic precipitation of uranium from a sample of acid leach liquor in an ion exchange membrane cell has been conducted on leach liquor from the Vitro Co. This leach liquor can be treated by the above means to precipitate essentially all the uranium and simultaneously to produce additional acid which may be used for further leaching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrolytic precipitation of uranium from ion-exchange resin eluates has been investigated in a three-compartment cell. A relatively low-energy consumption is required and anodic attack is reduced to a negligible quantity. During the precipitation, acid is produced in sufficient quantity for use as eluant for subsequent eluting operations. The recovered uranium is in the form of a rapid settling, fast filtering precipitate which is easily washed with water to reduce the chloride content to a tolerable concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Date Declassified: September 23, 1955."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Date Declassified: September 23, 1955."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Date Declassified: September 23, 1955."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Date Declassified: September 23, 1955."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract No. AT(49-1)-621."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion exchange resins are used for many purposes in various areas of science and commerce. One example is the use of cation exchange resins in the nuclear industry for the clean up of radioactively contaminated water (for example the removal of 137Cs). However, during removal of radionuclides, the resin itself becomes radioactively contaminated, and must be treated as Intermediate Level Waste. This radioactive contamination of the resin creates a disposal problem. Conventionally, there are two main avenues of disposal for industrial wastes, landfill burial or incineration. However, these are regarded as inappropriate for the disposal of the cation exchange resin involved in this project. Thus, a method involving the use of Fenton's Reagent (Hydrogen Peroxide/soluble Iron catalyst) to destroy the resin by wet oxidation has been developed. This process converts 95% of the solid resin to gaseous CO2, thus greatly reducing the volume of radioactive waste that has to be disposed of. However, hydrogen peroxide is an expensive reagent, and is a major component of the cost of any potential plant for the destruction of ion exchange resin. The aim of my project has been to discover a way of improving the efficiency of the destruction of the resin thus reducing the cost involved in the use of hydrogen peroxide. The work on this problem has been concentrated in two main areas:-1) Use of analytical techniques such as NMR and IR to follow the process of the hydrogen peroxide destruction of both resin beads and model systems such as water soluble calixarenes. 2) Use of various physical and chemical techniques in an attempt to improve the overall efficiency of hydrogen peroxide utilization. Examples of these techniques include UV irradiation, both with and without a photocatalyst, oxygen carrying molecules and various stirring regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research is to investigate potential methods to produce an ion-exchange membrane that can be integrated directly into a polydimethylsiloxane Lab-on-a-Chip or Micro-Total-Analysis-System. The majority of microfluidic membranes are based on creating microporous structures, because it allows flexibility in the choice of material such that it can match the material of the microfluidic chip. This cohesion between the material of the microfluidic chip and membrane is an important feature to prevent bonding difficulties which can lead to leaking and other practical problems. However, of the materials commonly used to manufacture microfluidic chips, there are none that provide the ion-exchange capability. The DuPont product Nafion{TM} is chosen as the ion-exchange membrane, a copolymer with high conductivity and selectivity to cations and suitable for many applications such as electrolysis of water and the chlor-alkali process. The use of such an ion-exchange membrane in microfluidics could have multiple advantages, but there is no reversible/irreversible bonding that occurs between PDMS and Nafion{TM}. In this project multiple methods of physical entrapment of the ion-exchange material inside a film of PDMS are attempted. Through the use of the inherent properties of PDMS, very inexpensive sugar granulate can be used to make an inexpensive membrane mould which does not interfere with the PDMS crosslinking process. After dissolving away this sacrificial mould material, Nafion{TM} is solidified in the irregular granulate holes. Nafion{TM} in this membrane is confined in the irregular shape of the PDMS openings. The outer structure of the membrane is all PDMS and can be attached easily and securely to any PDMS-based microfluidic device through reversible or irreversible PDMS/PDMS bonding. Through impedance measurement, the effectiveness of these integrated membranes are compared against plain Nafion{TM} films in simple sodium chloride solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents two novel methods for treating important environmental contaminants from two different wastewater streams. One process utilizes the kinetic advantages and reliability of ion exchanging clinoptilolite in combination with biological treatment to remove ammonium from municipal sewage. A second process, HAMBgR (Hybrid Adsorption Membrane Biological Reactor), combines both ion exchange resin and bacteria into a single reactor to treat perchlorate contaminated waters. Combining physicochemical adsorptive treatment with biological treatment can provide synergistic benefits to the overall removal processes. Ion exchange removal solves some of the common operational reliability limitations of biological treatment, like slow response to environmental changes and leaching. Biological activity can in turn help reduce the economic and environmental challenges of ion exchange processes, like regenerant cost and brine disposal. The second section of this study presents continuous flow column experiments, used to demonstrate the ability of clinoptilolite to remove wastewater ammonium, as well as the effectiveness of salt regeneration using highly concentrated sea salt solutions. The working capacity of clinoptilolite more than doubled over the first few loading cycles, while regeneration recovered more than 98% of ammonium. Using the regenerant brine for subsequent halotolerant algae growth allowed for its repeated use, which could lead to cost savings and production of valuable algal biomass. The algae were able to uptake all ammonium in solution, and the brine was able to be used again with no loss in regeneration efficiency. This process has significant advantages over conventional biological nitrification; shorter retention times, wider range of operational conditions, and higher quality effluent free of nitrate. Also, since the clinoptilolite is continually regenerated and the regenerant is rejuvenated by algae, overall input costs are expected to be low. The third section of this study introduces the HAMBgR process for the elimination of perchlorate and presents batch isotherm experiments and pilot reactor tests. Results showed that a variety of ion-exchange resins can be effectively and repeatedly regenerated biologically, and maintain an acceptable working capacity. The presence of an adsorbent in the HAMBgR process improved bioreactor performance during operational fluctuations by providing a physicochemical backup to the biological process. Pilot reactor tests showed that the HAMBgR process reduced effluent perchlorate spikes by up to 97% in comparison to a conventional membrane bio-reactor (MBR) that was subject to sudden changes in influent conditions. Also, the HAMBgR process stimulated biological activity and lead to higher biomass concentrations during increased contaminant loading conditions. Conventional MBR systems can be converted into HAMBgR’s at a low cost, easily justifiable by the realized benefits. The concepts employed in the HAMBgR process can be adapted to treat other target contaminants, not just perchlorate.