998 resultados para intestinal bacterial metabolite
Resumo:
Ischemia and reperfusion of the small intestine disrupts gut barrier, causes bacterial translocation and activates inflammatory responses. An experimental study was planned to evaluate if 99mTc labelled Escherichia coli translocates to mesenteric lymph nodes, liver, spleen, lung and serum of rats submitted to mesenteric ischemia/reperfusion. Additionally, it was observed if the time of reperfusion influences the level of translocation. METHODS: Forty male Wistar rats underwent 45 minutes of gut ischemia by occlusion of the superior mesenteric artery. The translocation of labelled bacteria to different organs and portal serum was determined in rats reperfused for 30 minutes, 24 hours, sham(S) and controls(C), using radioactivity count and colony forming units/g (CFU). RESULTS: All the organs from rats observed for 24 hours after reperfusion had higher levels of radioactivity and positive cultures (CFU) than did the organs of rats reperfused for 30 minutes, C and S, except in the spleen (p<0,01). CONCLUSION: The results of this study indicated that intestinal ischemia/reperfusion led to bacterial translocation, mostly after 24 hours of reperfusion
Resumo:
To investigate whether the alterations of the diverted colon segment mucosa, evidenced in fecal colitis, would be able to alter Bacterial Translocation (BT). Methods: Sixty-two Wistar male rats ranging from 220 to 320 grams of weight, were divided in two groups: A (Colostomy) and B (Control), with 31 animals each one. In group A, all animals underwent end colostomy, one stoma, in ascending colon; and in the 70th POD was injected in five rats, by rectal route – diverted segment - 2ml of a 0.9% saline solution in animals (A1 subgroup); in eight it was inoculated, by rectal route, 2ml of a solution containing Escherichia coli ATCC 25922 (American Type Culture Collection), in a concentration of 108 Colony Forming Unit for milliliters (CFU/ml) - A2 Subgroup; in ten animals the same solution of E. coli was inoculated, in a concentration of 1011 CFU/ml (A3 Subgroup); and in eight it was collected part of the mucus found in the diverted distal colonic segment for neutral sugars and total proteins dosage (A4 subgroup). The animals from the group B underwent the same procedures of group A, but with differences in the colostomy confection. In rats from subgroups A1, A2, A3, B1, B2, and B3 2ml of blood were aspirated from the heart, and fragments from mesenteric lymphatic nodule, liver, spleen, lung and kidney taken for microbiological analysis, after their death. This analysis consisted of evidencing the presence of E. coli ATCC 25922 CFU. Mann-Whitney and ANOVA Tests were applied as analytic techniques for association of variables. Results: The occurrence of BT was evidenced only in those animals in which inoculated concentration of E. coli ATCC 25922, reached levels of 1011CFU/ml, i.e. in Subgroups A3 and B3, although, being significantly greater (80%) in those animals without colostomy (subgroup B3) when compared to the ones with colostomy (20%) from the subgroup A3 (P <0.05). Lung, liver and mesenteric lymphatic nodules were the tissues with larger percentile of bacterial recovery, so much in subgroup A3, as in B3. Blood culture was considered positive in 60% of the animals from subgroup B3 and in 10% of those from subgroup A3 (p <0.05). There was greater concentration of neutral sugars, in subgroup A4 - mean 27.3mg/ml -, than in subgroup B4 - mean 8.4mg/ml - (P <0.05). Conclusion: The modifications in the architecture of intestinal mucosa in colitis following fecal diversion can cause alterations in the intestinal barrier, but it does not necessarily lead to an increased frequency of BT
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria
Resumo:
Use of antibiotics as an additive in poultry diets to improve growth has been discussed in relation to bacterial resistance and the development of new products and management practices. This study was carried out to test the efficacy of a new substance (Saccharomyces cereviside cell walls, var. Calsberg- SCCW) obtained from the brewery industry, added (at 0.1 and 0.2%) to broiler chicken diets (based on corn and soybean meal), on performance and intestinal mucosa development. In Experiment 1 (carried out in litter-floor pens) the results revealed higher body weight gain,for the total experimental period and higher villus height at 7 d of age for the birds fed 0.2%,SCCW. In a field test using 44,000 broilers that,received feed containing 0.2% SCCW,. The results also showed higher body weight gain and better feed conversion for SCCW-supplemented birds. The present findings show that SCCW improved body weight gain in broiler chickens and that this effect can be attributed to the trophic effect of this product on the intestinal mucosa, because it increases villus height, particularly during the first 7. d of a chicken's life.
Resumo:
This study aimed at evaluating the effect of the use of different growth promoters on the morphometry and ultra-structure of the intestinal mucosa of 42-day-old broilers. A total number of 36 male Cobb broilers was distributed in a randomized experimental design with a 3 x 3 factorial arrangement, with 3 prebiotic and 3 probiotic sources in the feed, summing up 9 treatments, with 4 replicates each. There was a significant interaction (P<0.01) among the studied factor for villi height (VH) in all intestinal segments, and for crypt depth (CD) in the duodenum and the ileum. In the duodenum, higher villi were obtained in the control group, with the combination of B. subtilis and prebiotics, and with the single use of MOS+OA. No VH differences were observed between the control group and those fed prebiotics. In the jejunum, the highest villi were obtained with the use of the bacterial pool, followed by the control group, and by the use of B. subtilis. Higher villi were also obtained in the control group and in the groups fed MOS, when B. subtilis was used in combination with prebiotics, and when the bacterial pool was used individually or in combination with MOS. In the ileum, the highest villi were obtained with the individual use of B. subtilis, and when MOS+OA or MOS were individually used or in combination with the bacterial pool. As to duodenal CID, deeper crypts were observed in the control group and in those fed B. subtilis or MOS+OA. In the ileum, deeper crypts were also found in the control group and those fed B. subtilis. Deeper crypts were also found when the bacterial pool was individually used or in combination with MOS+OA, and with the individual use of MOS. It was concluded that the use of growth promoters was beneficial to Increase intestinal villi height when Bacillus subtilis was used in combination with prebiotics. The other growth promoters (MOS+OA, MOS, and bacterial pool), can be individually used in most situations. The tested growth promoters did not influence intestinal villi density.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: To study the ability of two strains of vancomycin-resistant Enterococcus faecium to colonize the human intestine. Methods: A single human subject ingested separately two strains of vancomycin-resistant E. faecium isolated from a pig and a chicken. The feces were cultured on selective medium. Prior to ingestion no vancomycin-resistant cocci were present in the feces. Ingestion of 10 4-10 5 CFU resulted in either no colonization or isolation only after enrichment. Ingestion of 10 7 CFU of one strain resulted in colonization for a period of nearly 3 weeks, with fecal counts at times in excess of 10 6 CFU/g. Ingestion of similar numbers of the other strain and reingestion of the first strain resulted in excretion in the feces for much shorter periods. When the fecal count of the ingested strains was greater than 10 4-10 5 CFU/g, the strains were isolated from swabs taken from perianal skin. Conclusions: Vancomycin-resistant E. faecium strains from pigs and poultry a re able to colonize the human gut and the perianal skin.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE: The establishment of the intestinal microbiota in newborns is a critical period with possible long-term consequences for human health. In this research, the development of the fecal microbiota of a group of exclusively breastfed neonates living in low socio-economic conditions in the city of Sao Paulo, Brazil, during the first month of life, was studied. METHODS: Fecal samples were collected from ten neonates on the second, seventh, and 30th days after birth. One of the neonates underwent antibiotic therapy. Molecular techniques were used for analysis; DNA was extracted from the samples, and 16S rRNA libraries were sequenced and phylogenetically analyzed after construction. A real-time polymerase chain reaction (PCR) was performed on the samples taken from the 30th day to amplify DNA from Bifidobacterium sp. RESULTS: The primary phylogenetic groups identified in the samples were Escherichia and Clostridium. Staphylococcus was identified at a low rate. Bifidobacterium sp. was detected in all of the samples collected on the 30th day. In the child who received antibiotics, a reduction in anaerobes and Escherichia, which was associated with an overgrowth of Klebsiella, was observed throughout the experimental period. CONCLUSION: The observed pattern of Escherichia predominance and reduced Staphylococcus colonization is in contrast with the patterns observed in neonates living in developed countries.