941 resultados para instantaneous complex power


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average power ratio (PAPR) and avoid the problem of turning off antennas. But CODs for 2(a) antennas with a + 1 complex variables, with no zero entries are not known in the literature for a >= 4. In this paper, a method of obtaining no zero entry (NZE) codes, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE CPODs for 16 antennas. Moreover, starting from certain NZE CPODs for n antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulations results show that bit error performance of our codes under average power constraint is same as that of the CODs and superior to CODs under peak power constraint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zero entries in complex orthogonal designs (CODs) impede their practical implementation. In this paper, a method of obtaining a no zero entry (NZE) code for 2(k+1) antennas whenever a NZE code exists for 2(k) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE codes for 16 antennas. Simulation results show good performance of our new codes compared to the well known constructions for 16 and 32 antennas under peak power constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Contesting Forests and Power; Dispute, Violence and Negotiations in Central Java" is an ethnographic analysis of an ongoing forest land dispute and its negotiations in an upland forest village in the district of Wonosobo, Central Java. Rather than focusing only on the village site, this ethnography of global connections explores the inequalities of power in different negotiation arenas and how these power relations have had an effect on the dispute and efforts made to settle it. Today, national and transnational connections have an effect on how land disputes develop. This study argues that different cosmological and cultural orientations influence how the dispute and its negotiations have evolved. It draws its theoretical framework from legal and political anthropology by looking at the position of law in society, exploring state formation processes and issues of power. The dispute over state forest land is about a struggle over sovereignty which involves violence on the parts of different parties who maintain that they have a legitimate right to the state forest land. This anthropological study argues that this dispute and its negotiations reflect the plurality of laws in Java and Indonesia in a complex way. It shows that this dispute over forests and land in Java has deep historical roots that were revealed as the conflict emerged. Understanding land disputes in Java is important because of the enormous potential for conflicts over land and other natural resources throughout Indonesia. After the fall of President Suharto in 1998, disputes over access to state forest land emerged as a problem all over upland Java. As the New Order came to an end, forest cover on state forest lands in the Wonosobo district was largely destroyed. Disputes over access to land and forests took another turn after the decentralization effort in 1999, suggesting that decentralization does not necessarily contribute to the protection of forests. The dispute examined here is not unique, but, rather, this study attempts to shed light on forest-related conflicts all around upland Indonesia and on the ways in which differential power relations are reflected in these conflicts and the negotiation processes meant to resolve them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluctuation of the distance between a fluorescein-tyrosine pair within a single protein complex was directly monitored in real time by photoinduced electron transfer and found to be a stationary, time-reversible, and non-Markovian Gaussian process. Within the generalized Langevin equation formalism, we experimentally determine the memory kernel K(t), which is proportional to the autocorrelation function of the random fluctuating force. K(t) is a power-law decay, t(-0.51 +/- 0.07) in a broad range of time scales (10(-3)-10 s). Such a long-time memory effect could have implications for protein functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space-time block codes based on orthogonal designs are used for wireless communications with multiple transmit antennas which can achieve full transmit diversity and have low decoding complexity. However, the rate of the square real/complex orthogonal designs tends to zero with increase in number of antennas, while it is possible to have a rate-1 real orthogonal design (ROD) for any number of antennas.In case of complex orthogonal designs (CODs), rate-1 codes exist only for 1 and 2 antennas. In general, For a transmit antennas, the maximal rate of a COD is 1/2 + l/n or 1/2 + 1/n+1 for n even or odd respectively. In this paper, we present a simple construction for maximal-rate CODs for any number of antennas from square CODs which resembles the construction of rate-1 RODs from square RODs. These designs are shown to be amenable for construction of a class of generalized CODs (called Coordinate-Interleaved Scaled CODs) with low peak-to-average power ratio (PAPR) having the same parameters as the maximal-rate codes. Simulation results indicate that these codes perform better than the existing maximal rate codes under peak power constraint while performing the same under average power constraint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional thyristor-based load commutated inverter (LCI)-fed wound field synchronous machine operates only above a minimum speed that is necessary to develop enough back emf to ensure commutation. The drive is started and brought up to a speed of around 10-15% by a complex `dc link current pulsing' technique. During this process, the drive have problems such as pulsating torque, insufficient average starting torque, longer starting time, etc. In this regard a simple starting and low-speed operation scheme, by employing an auxiliary low-power voltage source inverter (VSI) between the LCI and the machine terminals, is presented in this study. The drive is started and brought up to a low speed of around 15% using the VSI alone with field oriented control. The complete control is then smoothly and dynamically transferred to the conventional LCI control. After the control transfer, the VSI is turned off and physically disconnected from the main circuit. The advantages of this scheme are smooth starting, complete control of torque and flux at starting and low speeds, less starting time, stable operation, etc. The voltage rating of the required VSI is very low of the order of 10-15%, whereas the current rating is dependent on the starting torque requirement of the load. The experimental results from a 15.8 hp LCI-fed wound field synchronous machine are given to demonstrate the scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Load commutated inverter (LCI)-fed wound field synchronous motor drives are used for medium-voltage high-power drive applications. This drive suffers from drawbacks such as complex starting procedure, sixth harmonic torque pulsations, quasi square wave motor current, notches in the terminal voltages, etc. In this paper, a hybrid converter circuit, consisting of an LCI and a voltage source inverter (VSI), is proposed, which can be a universal high-power converter solution for wound field synchronous motor drives. The proposed circuit, with the addition of a current-controlled VSI, overcomes nearly all of the shortcomings present in the conventional LCI-based system besides providing many additional advantages. In the proposed drive, the motor voltage and current are always sinusoidal even with the LCI switching at the fundamental frequency. The performance of the drive is demonstrated with detailed experimental waveforms from a 15.8-hp salient pole wound field synchronous machine. Finally, a brief description of the control scheme used for the proposed circuit is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Static distance relays employing semiconductor devices as their active elements offer many advantages over the conventional electromagnetic and rectifier relays. The paper describes single-system and three-system static distance relays, which depend for their operation on the instantaneous-comparison or `block-spike¿ scheme. Design principles and typical discriminating and logic circuits are described for the new relaying equipment. The relaying circuitry has been devised for obtaining uniform performance on all kinds of faults, by the use of two phase detectors¿one for multiphase faults and one for earth faults. The phase detector for multiphase faults provides an improved polar characteristic in the complex-impedance plane, which fits only around the fault area of a transmission line. The other features of the relay are: reliable pickup for close-in faults, least susceptibility to maloperation under power-swing conditions, and reduction in cost and panel space required. The operating characteristics of the relays, as expressed by accuracy/range charts, are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new automatic generation controller (AGC) design approach, adopting reinforcement learning (RL) techniques, was recently pro- posed [1]. In this paper we demonstrate the design and performance of controllers based on this RL approach for automatic generation control of systems consisting of units having complex dynamics—the reheat type of thermal units. For such systems, we also assess the capabilities of RL approach in handling realistic system features such as network changes, parameter variations, generation rate constraint (GRC), and governor deadband.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maximal rate of a nonsquare complex orthogonal design for transmit antennas is 1/2 + 1/n if is even and 1/2 + 1/n+1 if is odd and the codes have been constructed for all by Liang (2003) and Lu et al. (2005) to achieve this rate. A lower bound on the decoding delay of maximal-rate complex orthogonal designs has been obtained by Adams et al. (2007) and it is observed that Liang's construction achieves the bound on delay for equal to 1 and 3 modulo 4 while Lu et al.'s construction achieves the bound for n = 0, 1, 3 mod 4. For n = 2 mod 4, Adams et al. (2010) have shown that the minimal decoding delay is twice the lower bound, in which case, both Liang's and Lu et al.'s construction achieve the minimum decoding delay. For large value of, it is observed that the rate is close to half and the decoding delay is very large. A class of rate-1/2 codes with low decoding delay for all has been constructed by Tarokh et al. (1999). In this paper, another class of rate-1/2 codes is constructed for all in which case the decoding delay is half the decoding delay of the rate-1/2 codes given by Tarokh et al. This is achieved by giving first a general construction of square real orthogonal designs which includes as special cases the well-known constructions of Adams, Lax, and Phillips and the construction of Geramita and Pullman, and then making use of it to obtain the desired rate-1/2 codes. For the case of nine transmit antennas, the proposed rate-1/2 code is shown to be of minimal delay. The proposed construction results in designs with zero entries which may have high peak-to-average power ratio and it is shown that by appropriate postmultiplication, a design with no zero entry can be obtained with no change in the code parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a complex, additive, white Gaussian noise channel with flat fading. We study its diversity order vs transmission rate for some known power allocation schemes. The capacity region is divided into three regions. For one power allocation scheme, the diversity order is exponential throughout the capacity region. For selective channel inversion (SCI) scheme, the diversity order is exponential in low and high rate region but polynomial in mid rate region. For fast fading case we also provide a new upper bound on block error probability and a power allocation scheme that minimizes it. The diversity order behaviour of this scheme is same as for SCI but provides lower BER than the other policies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A power scalable receiver architecture is presented for low data rate Wireless Sensor Network (WSN) applications in 130nm RF-CMOS technology. Power scalable receiver is motivated by the ability to leverage lower run-time performance requirement to save power. The proposed receiver is able to switch power settings based on available signal and interference levels while maintaining requisite BER. The Low-IF receiver consists of Variable Noise and Linearity LNA, IQ Mixers, VGA, Variable Order Complex Bandpass Filter and Variable Gain and Bandwidth Amplifier (VGBWA) capable of driving variable sampling rate ADC. Various blocks have independent power scaling controls depending on their noise, gain and interference rejection (IR) requirements. The receiver is designed for constant envelope QPSK-type modulation with 2.4GHz RF input, 3MHz IF and 2MHz bandwidth. The chip operates at 1V Vdd with current scalable from 4.5mA to 1.3mA and chip area of 0.65mm2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of complex networks has attracted the attention of the scientific community for many obvious reasons. A vast number of systems, from the brain to ecosystems, power grid, and the Internet, can be represented as large complex networks, i.e, assemblies of many interacting components with nontrivial topological properties. The link between these components can describe a global behaviour such as the Internet traffic, electricity supply service, market trend, etc. One of the most relevant topological feature of graphs representing these complex systems is community structure which aims to identify the modules and, possibly, their hierarchical organization, by only using the information encoded in the graph topology. Deciphering network community structure is not only important in order to characterize the graph topologically, but gives some information both on the formation of the network and on its functionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal processing techniques play important roles in the design of digital communication systems. These include information manipulation, transmitter signal processing, channel estimation, channel equalization and receiver signal processing. By interacting with communication theory and system implementing technologies, signal processing specialists develop efficient schemes for various communication problems by wisely exploiting various mathematical tools such as analysis, probability theory, matrix theory, optimization theory, and many others. In recent years, researchers realized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range of different physical communications channels. Using the elegant matrix-vector notations, many MIMO transceiver (including the precoder and equalizer) design problems can be solved by matrix and optimization theory. Furthermore, the researchers showed that the majorization theory and matrix decompositions, such as singular value decomposition (SVD), geometric mean decomposition (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for solving many of the point-to-point MIMO transceiver design problems.

In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels, and doubly selective scalar channels. Additionally, the channel estimation problem is also considered. The main contributions of this dissertation are the development of new matrix decompositions, and the uses of the matrix decompositions and majorization theory toward the practical transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are obtained, novel transceiver structures are developed, ingenious algorithms are proposed, and performance analyses are derived.

The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We propose a novel matrix decomposition which decomposes a complex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of the new decomposition, generalized geometric mean decomposition (GGMD), is always less than or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which yield the minimal complexity are derived. Based on the channel state information (CSI) at both the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square error (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver has K/log_2(K) times complexity advantage over the GMD transceiver, where K is the number of data symbols per data block and is a power of 2. The performance analysis shows that the GGMD DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is automatically minimized without the need for bit allocation. Moreover, the proposed transceiver can achieve the channel capacity simply by applying independent scalar Gaussian codes of the same rate at subchannels.

In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends, their performance is by no means optimal since the temporal diversity of the time-varying channels is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under perfect channel prediction, the new system minimizes both the average MSE at the detector in each space-time (ST) block (which consists of several coherence blocks), and the average per ST-block BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based systems since the super-imposed temporal precoder is able to exploit the temporal diversity of time-varying channels. For practical applications, a novel ST-GTD based system which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.

The third part of the thesis considers two quality of service (QoS) transceiver design problems for flat MIMO broadcast channels. The first one is the power minimization problem (min-power) with a total bitrate constraint and per-stream BER constraints. The second problem is the rate maximization problem (max-rate) with a total transmit power constraint and per-stream BER constraints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems. The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT) and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for arbitrary number of users.

Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and unknown wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the receiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can construct M^2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace methods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of identifiable paths is up to O(M^2), theoretically. With the delay information, a MMSE estimator for frequency response is derived. It is shown through simulations that the proposed method outperforms the conventional subspace channel estimator when the number of multipaths is greater than or equal to the number of physical pilots minus one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.

Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.

The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.