174 resultados para insoluable anodes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with an investigation of the anodic behaviour of ruthenium and iridium in aqueous solution and particularly of oxygen evolution on these metals. The latter process is of major interest in the large-scale production of hydrogen gas by the electrolysis of water. The presence of low levels of ruthenium trichloride ca. 10-4 mol dm-3 in acid solution give a considerable increase in the rate of oxygen evolution from platinum and gold, but not graphite, anodes. The mechanism of this catalytic effect was investigated using potential step and a.c. impedance technique. Earlier suggestions that the effect is due to catalysis by metal ions in solution were proved to be incorrect and it was shown that ruthenium species were incorporated into the surface oxide film. Changes in the oxidation state of these ruthenium species is probably responsible for the lowering of the oxygen overvoltage. Both the theoretical and practical aspects of the reaction were complicated by the fact that at constant potential the rates of both the catalysed and the uncatalysed oxygen evolution processes exhibit an appreciable, continuous decrease with either time or degree of oxidation of the substrate. The anodic behaviour of iridium in the oxide layer region has been investigated using conventional electrochemical techniques such as cyclic voltammetry. Applying a triangular voltage sweep at 10 Hz, 0.01 to 1.50V increases the amount of electric charge which the surface can store in the oxide region. This activation effect and the mechanism of charge storage is discussed in terms of both an expanded lattice theory for oxide growth on noble metals and a more recent theory of irreversible oxide formation with subsequent stoichiometry changes. The lack of hysteresis between the anodic and cathodic peaks at ca. 0.9 V suggests that the process involved here is proton migration in a relatively thick surface layer, i.e. that the reaction involved is some type of oxide-hydroxide transition. Lack of chloride ion inhibition in the anodic region also supports the irreversible oxide formation theory; however, to account for the hydrogen region of the potential sweep a compromise theory involving partial reduction of the outer regions of iridium oxide film is proposed. The loss of charge storage capacity when the activated iridium surface is anodized for a short time above ca. 1.60 V is attributed to loss by corrosion of the outer active layer from the metal surface. The behaviour of iridium at higher anodic potentials in acid solution was investigated. Current-time curves at constant potential and Tafel plots suggested that a change in the mechanism of the oxygen evolution reaction occurs at ca. 1.8 V. Above this potential, corrosion of the metal occurred, giving rise to an absorbance in the visible spectrum of the electrolyte (λ max = 455 nm). It is suggested that the species involved was Ir(O2)2+. A similar investigation in the case of alkaline electrolyte gave no evidence for a change in mechanism at 1.8 V and corrosion of the iridium was not observed. Oxygen evolution overpotentials were much lower for iridium than for platinum in both acidic and alkaline solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical generation of ozone by Ni/Sb-SnO2 anodes immersed in 0.5M H2SO4 was assessed in both flow and recycle systems using the same electrochemical cell. The anodes were found to exhibit current efficiencies of up to 50% for ozone generation under flow conditions at room temperature, with an optimum mole ratio in the precursor solutions of ca. 500:8:3 Sn:Sb:Ni and optimum cell voltage of 2.7V. A comparison of the data obtained under flow and recycle conditions suggests that the presence of ozone in the anolyte inhibits its formation. The minimum electrical energy cost achieved, of 18 kWh kg1 compares favorably with estimated costs for Cold Corona Discharge generally reported in the literature, especially when the very significant advantages of electrochemical ozone generation are taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of cathodic protection in reinforced concrete is becoming increasingly common with such systems being installed on a number of structures throughout the United Kingdom and Ireland. However the prescribed design lives (or service life) of each cathodic protection system vary widely. The aim of this project was to assess the effectiveness of a sacrificial anode cathodic protection system and to predict its design life through a series of laboratory based experiments. The experimental plan involved casting a number of slabs which represented a common road bridge structure. The corrosion of the steel within the experimental slabs was then accelerated prior to installation of a cathodic protection system. During the experiment corrosion potential of the steel reinforcement was monitored using half-cell measurement. Additionally the current flow between the cathodic protection system and the steel reinforcement was recorded to assess the degree of protection. A combination of theoretical calculations and experimental results were then collated to determine the design life of this cathodic protection system. It can be concluded that this sacrificial anode based cathodic protection system was effective in halting the corrosion of steel reinforcement in the concrete slabs studied. Both the corrosion current and half-cell potentials indicated a change in passivity for the steel reinforcement once sacrificial anodes were introduced. The corrosion current was observed to be sensitive to the changes to the exposure environment. Based on the experimental variables studied the design life of this sacrificial anode can be taken as 26 to 30 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was focused on the analysis of transport, thermomechanical and electrochemical properties of a series of perovskite-like oxide materials and composites for potential applications as anodes of intermediate-temperature solid oxide fuel cells (SOFCs) with lanthanum gallate and silicate solid electrolytes. The primary attention was centered on A(Mn,Nb)O3-δ (A = Sr, Ca) and (La,Sr)(Mn,Ti)O3-based systems, lanthanum chromite substituted with acceptor-type and variable-valence cations, and various Ni-containing cermets. Emphasis was given to phase stability of the materials, their crystal structure, microstructure of porous electrode layers and dense ceramics, electronic conductivity, Seebeck coefficient, oxygen permeability, thermal and chemical induced expansion, and anodic overpotentials of the electrodes deposited onto (La,Sr)(Ga,Mg)O3- and La10(Si,Al)6O27- based electrolyte membranes. In selected cases, roles of oxygen diffusivity, states of the transition metal cations relevant for the electronic transport, catalytically active additives and doped ceria protective interlayers introduced in the model electrochemical cells were assessed. The correlations between transport properties of the electrode materials and electrochemical behavior of porous electrodes showed that the principal factors governing anode performance include, in particular, electronic conduction of the anode compositions and cation interdiffusion between the electrodes and solid electrolytes. The latter is critically important for the silicatebased electrolyte membranes, leading to substantially worse anode properties compared to the electrochemical cells with lanthanum gallate solid electrolyte. The results made it possible to select several anode compositions exhibiting lower area-specific electrode resistivity compared to known analogues, such as (La,Sr)(Cr,Mn)O3-δ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this PhD thesis was to provide convincing demonstration for a breakthrough concept of pyroelectrolysis at laboratory scale. One attempted to identify fundamental objections and/or the most critical constraints, to propose workable concepts for the overall process and for feasible electrodes, and to establish the main requirements on a clearer basis. The main effort was dedicated to studying suitable anode materials to be developed for large scale industrial units with molten silicate electrolyte. This concept relies on consumable anodes based on iron oxides, and a liquid Fe cathode, separated from the refractory materials by a freeze lining (solid) layer. In addition, one assessed an alternative concept of pyroelectrolysis with electron blocking membranes, and developed a prototype at small laboratory scale. The main composition of the molten electrolyte was based on a magnesium aluminosilicate composition, with minimum liquidus temperature, and with different additions of iron oxide. One studied the dynamics of devitrification of these melts, crystallization of iron oxides or other phases, and Fe2+/Fe3+ redox changes under laser zone melting, at different pulling rates. These studies were intended to provide guidelines for dissolution of raw materials (iron oxides) in the molten electrolyte, to assess compatibility with magnetite based consumable anodes, and to account for thermal gradients or insufficient thermal management in large scale cells. Several laboratory scale prototype cells were used to demonstrate the concept of pyroelectrolysis with electron blocking, and to identify the most critical issues and challenges. Operation with and without electron blocking provided useful information on transport properties of the molten electrolyte (i.e., ionic and electronic conductivities), their expected dependence on anodic and cathodic overpotentials, limitations in faradaic efficiency, and onset of side electrochemical reactions. The concept of consumable anodes was based on magnetite and derived spinel compositions, for their expected redox stability at high temperatures, even under oxidising conditions. Spinel compositions were designed for prospective gains in refractoriness and redox stability in wider ranges of conditions (T, pO2 and anodic overpotentials), without excessive penalty for electrical conductivity, thermomechanical stability or other requirements. Composition changes were also mainly based on components of the molten aluminosilicate melt, to avoid undue contamination and to minimize the dissolution rate of consumable anodes. Additional changes in composition were intended for prospective pyroelectrolysis of Fe alloys, with additions of different elements (Cr, Mn, Ni, Ti).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interest in chromium (Cr) arises from the widespread use of this heavy metal in various industrial processes that cause its release as liquid, solid and gaseous waste into the environment. The impact of Cr on the environment and living organisms primarily depends on its chemical form, since Cr(III) is an essential micronutrient for humans, other animals and plants, and Cr(VI) is highly toxic and a known human carcinogen. This study aimed to evaluate if the electrodialytic process (ED) is an appropriate treatment for Cr removal, through a critical overview of Cr speciation, before and after the ED experiments, to assess possible Cr(III)-Cr(VI) interconversions during the treatment. ED was the treatment technique applied to two types of matrices containing Cr: chromate copper arsenate (CCA) contaminated soil and municipal solid waste incineration (MSWI) fly ash. In order to study Cr remediation, three EDR set-ups were used: a new set-up, the combined cell (2/3C or 3/2C), with three compartments, alternating current between two anodes and different initial experimental conditions, one set-up with three compartments (3C cell) and the other set-up with two compartments (2C cell). The Cr removal rates obtained in this study were between 10-36% for the soil, and 1-13% for the fly ash. The highest Cr removal rates were achieved in the 26 days experiments: 36% for the soil, 13% for the fly ash. Regarding the 13 days experiments, the highest Cr removal rates were attained with the 2/3C set-up: 24% for the soil, 5% for the fly ash. The analysis of Cr(VI) was performed before and after ED experiments to evaluate eventual changes in Cr speciation during the treatment. This analysis was conducted by two methods: USEPA Method 3060A, for the extraction of Cr(VI); and Hach Company Method 8023, for the detection of Cr(VI). Despite the differences in Cr total concentration, both matrices presented a similar speciation, with Cr(III) being the main species found and Cr(VI) less than 3% of Cr total, before and after the treatment. For fly ash, Cr(VI) was initially below the detection limit of the method and remained that way after the treatment. For soil, Cr(VI) decreased after the treatment. Oxidation of Cr(III) to Cr(VI) did not occur during the ED process since there was no increase in Cr(VI) in the matrices after the treatment. Hence, the results of this study indicate that ED is an appropriate technique to remediate matrices containing Cr because it contributes to Cr removal, without causing Cr(III)-Cr(VI) interconversions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schottky barrier diodes have been integrated into on-chip rectangular waveguides. Two novel techniques have been developed to fabricate diodes with posts suitable for integration into waveguides. One technique produces diodes with anode diameters of the order of microns with post heights from 90 to 125 microns and the second technique produces sub-micron anodes with post heights around 20 microns. A method has been developed to incorporate these structures into a rectangular waveguide and provide a top contact onto the anode which could be used as an I.F. output in a mixer circuit. Devices have been fabricated and D.C. characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of novel structures by the passage of an electric current through graphite is described. These structures apparently consist of hollow three-dimensional graphitic shells bounded by curved and faceted planes, typically made up of two graphene layers. The curved structures were frequently decorated with nano-scale carbon particles, or short nanotubes. In some cases, nanotubes were found to be seamlessly connected to the thin shells, indicating that the formation of the shells and the nanotubes is intimately connected. Small nanotubes or nanoparticles were also sometimes found encapsulated inside the hollow structures, while fullerene-like particles were often seen attached to the outside surfaces. With their high surface areas and structural perfection, the new carbon structures may have applications as anodes of lithium ion batteries or as components of composite materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A porous nickel-8 mol% yttria stabilized zirconia (Ni-8YSZ) composite, used as anode for solid oxide fuel cell, was obtained by reduction of NiO-8YSZ cermet. The first goal was the evaluation of the temperature effect of powder processing by thermogravimetry. In addition, the influence of porosity in the reduction kinetic of the sample sintered at 1450 A degrees C was evaluated. The final porosity produced in NiO-8YSZ composite by pore former was 30.4 and 37.9 vol.%, respectively, for 10 and 15 mass% of corn starch. The sample with 15 mass% of corn starch promotes a reduction rate almost twice higher than sample with 10 mass% of corn starch. The porosity introduced by the reduction of NiO was 23 vol.%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ethanol oxidation reaction (EOR) was investigated using PtSnCe/C electrocatalysts in different mass ratios (72:23:5, 68:22:10 and 64:21:15) that were prepared by the polymeric precursor method. Transmission electron microscopy (TEM) showed that the particles ranged in size from approximately 2 to 5 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn and Ce into the Pt crystalline network with the formation of an alloy between Pt, Sn and/or Ce. Among the PtSnCe catalysts investigated, the 68:22:10 composition showed the highest activity toward ethanol oxidation, and the current time curves obtained in the presence of ethanol in acidic media showed a current density 50% higher than that observed for commercial PtSn/C (E-Tek). During the experiments performed on single direct ethanol fuel cells, the power density for the PtSnCe/C 68:22:10 anode was nearly 40% higher than the one obtained using the commercial catalyst. Data from Fourier transform infrared (FTIR) spectroscopy showed that the observed behavior for ethanol oxidation may be explained in terms of a double mechanism. The presence of Sn and Ce seems to favor CO oxidation, since they produce an oxygen-containing species to oxidize acetaldehyde to acetic acid. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol -gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt-PbO(x) and Pt-(RuO(2)-PbO(x)) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt-(RuO(2))/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt-PbO(x)/C and Pt-(RuO(2)-PbO(x))/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt-PbO(x), Pt-(RuO(2)-PbO(x))/C and Pt-(RuO(2)-IrO(2))/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO(x) onto high-area carbon powder, by the sol -gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the treatment of synthetic wastewaters containing Remazol Red BR (RRB) and Novacron Blue C-D (NB) by anodic oxidation using boron doped diamond anodes (BDD) and Novacron Yellow (YN) using BDD and Platinum (Pt) anodes was investigated. Galvanostatic electrolyses of RRB and NB synthetic wastewaters have led to the complete decolorization removal at different operating conditions (current density, pH and temperature). The influence of these parameters was investigated in order to find the best conditions for dyestuff colour removal. According to the experimental results obtained, the electrochemical oxidation process is suitable for decolorizing wastewaters containing these textile dyes, due to the electrocatalytic properties of BDD and Pt anode. Energy requirements for removing colour during galvanostatic electrolyses of RRB, NB and YN synthetic solutions depends mainly on the operating conditions; for example for RRB, it passes from 3.30 kWh m-3 at 20 mA cm-2 to 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH = 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (data estimated per volume of treated effluent). In order to verify the Brazilian law regulations of NB and RRB synthetic solutions after electrochemical decolourisation treatment, Hazen Units values were determined and the total colour removal was achieved; remaining into the regulations. Finally, electrical energy cost for removing colour was estimated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many pollutants dumped in waterways, such as dyes and pesticides, have become so ubiquitous that they represent a serious threat to human health. The electrochemical oxidation is presented as an alternative clean, efficient and economic degradation of wastewater containing organic compounds and a number of advantages of this technique is to just not make use of chemical reagents, since only electrical energy is consumed during the removal of pollutants organic. However, despite being a promising alternative, still needs some tweaking in order to obtain better efficiency in the elimination of persistent pollutants. Thus, this study sought a relationship between a recently discovered phenomenon that reflects the participation of dissolved oxygen in solution in the electrochemical oxidation process, as an anomaly, present a kinetic model that shows instantaneous current efficiency (ICE) above 100% limited by theory, manifested for some experiments with phenolic compounds with H2SO4 or HClO4 as supporting electrolyte with electrodes under anodic oxidation on boron doped diamond (BDD). Therefore it was necessary to reproduce the data ICE exposes the fault model, and thus the 2-naphthol was used as phenolic compound to be oxidised at concentrations of 9, 12 and 15 mmol L-1, and H2SO4 and HClO4 to 1 mol L-1 as a supporting electrolyte under a current density of 30 mA cm-2 in an electrochemical reactor for continuous flow disk configuration, and equipped with anodes DDB at room temperature (25 oC). Experiments were performed using N2 like as purge gas for eliminate oxygen dissolved in solution so that its influence in the system was studied. After exposure of the anomaly of the ICE model and investigation of its relationship with dissolved O2, the data could be treated, making it possible for confirmation. But not only that, the data obtained from eletranálise and spectroscopic analysis suggest the involvement of other strongly oxidizing species (O3 (ozone) and O radicals and O2 -), since the dissolved O2 can be consumed during the formation of new strong oxidizing species, not considered until now, something that needs to be investigated by more accurate methods that we may know a little more of this system. Currently the performance of the electrocatalytic process is established by a complex interaction between different parameters that can be optimized, so it is necessary to the implementation of theoretical models, which are the conceptual lens with which researchers see