989 resultados para insect pests


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic engineering of Bacillus thuringiensis (Bt) Cry proteins has resulted in the synthesis of various novel toxin proteins with enhanced insecticidal activity and specificity towards different insect pests. In this study, a fusion protein consisting of the DI–DII domains of Cry1Ac and garlic lectin (ASAL) has been designed in silico by replacing the DIII domain of Cry1Ac with ASAL. The binding interface between the DI–DII domains of Cry1Ac and lectin has been identified using protein–protein docking studies. Free energy of binding calculations and interaction profiles between the Cry1Ac and lectin domains confirmed the stability of fusion protein. A total of 18 hydrogen bonds was observed in the DI–DII–lectin fusion protein compared to 11 hydrogen bonds in the Cry1Ac (DI–DII–DIII) protein. Molecular mechanics/Poisson–Boltzmann (generalized-Born) surface area [MM/PB (GB) SA] methods were used for predicting free energy of interactions of the fusion proteins. Protein–protein docking studies based on the number of hydrogen bonds, hydrophobic interactions, aromatic–aromatic, aromatic–sulphur, cation–pi interactions and binding energy of Cry1Ac/fusion proteins with the aminopeptidase N (APN) of Manduca sexta rationalised the higher binding affinity of the fusion protein with the APN receptor compared to that of the Cry1Ac–APN complex, as predicted by ZDOCK, Rosetta and ClusPro analysis. The molecular binding interface between the fusion protein and the APN receptor is well packed, analogously to that of the Cry1Ac–APN complex. These findings offer scope for the design and development of customized fusion molecules for improved pest management in crop plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we analyzed climate and crop yields data from Indian cardamom hills for the period 1978-2007 to investigate whether there were significant changes in weather elements, and if such changes have had significant impact on the production of spices and plantation crops. Spatial and temporal variations in air temperatures (maximum and minimum), rainfall and relative humidity are evident across stations. The mean air temperature increased significantly during the last 30 years; the greatest increase and the largest significant upward trend was observed in the daily temperature. The highest increase in minimum temperature was registered for June (0.37A degrees C/18 years) at the Myladumpara station. December and January showed greater warming across the stations. Rainfall during the main monsoon months (June-September) showed a downward trend. Relative humidity showed increasing and decreasing trends, respectively, at the cardamom and tea growing tracts. The warming trend coupled with frequent wet and dry spells during the summer is likely to have a favorable effect on insect pests and disease causing organisms thereby pesticide consumption can go up both during excess rainfall and drought years. The incidence of many minor pest insects and disease pathogens has increased in the recent years of our study along with warming. Significant and slight increases in the yield of small cardamom (Elettaria cardamomum M.) and coffee (Coffea arabica), respectively, were noticed in the recent years.; however the improvement of yield in tea (Thea sinensis) and black pepper (Piper nigrum L.) has not been seen in our analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bamboo reinforced epoxy possesses reasonably good properties to waarrant its use as a structural material, and is fabricated by utilizing bamboo, an abundant material resource, in the technology of fibre composites. Literature on bamboo-plastics composites is rare. This work is an experimental study of unidirectional bamboo-epoxy laminates of varying laminae number, in which tensile, compressive, flexural and interlaminar shear properties are evaluated. Further, the disposition of bamboo fibre, the parenchymatous tissue, and the resin matrix under different loading conditions are examined. Our results show that the specific strength and specific modulus of bamboo-epoxy laminates are adequate, the former being 3 to 4 times that of mild steel. Its mechanical properties are generally comparable to those of ordinary glass-fibre composites. The fracture behaviour of bamboo-epoxy under different loading conditions were observed using both acoustic emission techniques and scanning electron microscopy. The fracture mode varied with load, the fracture mechanism being similar to glass and carbon reinforced composites. Microstructural analyses revealed that natural bamboo is eligibly a fibre composite in itself; its inclusion in a plastic matrix will help solve the problems of cracking due to desiccation and bioerosion caused by insect pests. Furthermore, the thickness and shape of the composite can be tailored during fabrication to meet specific requirements, thereby enabling a wide spectrum of applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is an experimental study of unidirectional bamboo-epoxy laminates of varying laminae number, in which tensile, compressive, flexural and interlaminar shear properties are evaluated. Further, the disposition of bamboo fibre, the parenchymatous tissue, and the resin matrix under different loading conditions are examined. Our results show that the specific strength and specific modulus of bamboo-epoxy laminates are adequate, the former being 3 to 4 times that of mild steel. Its mechanical properties are generally comparable to those of ordinary glass-fibre composites. The fracture behaviour of bamboo-epoxy under different loading conditions were observed using both acoustic emission techniques and scanning electron microscopy. The fracture mode varied with load, the fracture mechanism being similar to glass and carbon reinforced composites. Microstructural analyses revealed that natural bamboo is eligibly a fibre composite in itself; its inclusion in a plastic matrix will help solve the problems of cracking due to desiccation and bioerosion caused by insect pests. Furthermore, the thickness and shape of the composite can be tailored during fabrication to meet specific requirements, thereby enabling a wide spectrum of applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Dicistroviridae is a new family of small, non-enveloped, +ssRNA viruses pathogenic to both beneficial arthropods and insect pests. Little is known about the dicistrovirus replication mechanism or gene function, and any knowledge on these subjects comes mainly from comparisons with mammalian viruses from the Picornaviridae family. Due to its peculiar genome organization and characteristics of the per os viral transmission route, dicistroviruses make good candidates for use as biopesticides. Triatoma virus (TrV) is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of the human trypanosomiasis disease called Chagas disease. TrV was postulated as a potential control agent against Chagas' vectors. Although there is no evidence that TrV nor other dicistroviruses replicate in species outside the Insecta class, the innocuousness of these viruses in humans and animals needs to be ascertained. Methods: In this study, RT-PCR and ELISA were used to detect the infectivity of this virus in Mus musculus BALB/c mice. Results: In this study we have observed that there is no significant difference in the ratio IgG2a/IgG1 in sera from animals inoculated with TrV when compared with non-inoculated animals or mice inoculated only with non-infective TrV protein capsids. Conclusions: We conclude that, under our experimental conditions, TrV is unable to replicate inmice. This study constitutes the first test to evaluate the infectivity of a dicistrovirus in a vertebrate animal model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dicistroviridae is a new family of small, nonenveloped, and +ssRNA viruses pathogenic to both beneficial arthropods and insect pests as well. Triatoma virus (TrV), a dicistrovirus, is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Chagas disease. In this work, we report a single-step method to identify TrV, a dicistrovirus, isolated from fecal samples of triatomines. The identification method proved to be quite sensitive, even without the extraction and purification of RNA virus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews the production trials of rice-cum-fish culture. Rice and various fish species using rotation and concurrent methods of cultivation are used. The farming system is mostly practiced and researched in to in Southeast Asian countries. It addresses the problems of high external inputs, sustainable aquaculture, poverty and nutrition in the rural population, insect pests, use of insecticides, weeds control and under-utilization of agricultural lands. The production trials yields are summarized and a summary of annual income per hectare from rice and fish have been given. The yield however depends to a large extent on the species stocked, culture period, fertility of the soil and water, degree of supplemental feeding and culturing methods. The production results are discussed. Niger state is blessed with abundant wetlands/rice fields suitable for the practice. However, ecological differences from country to country and region to region, research and development trials are necessary to ensure a successful adoption of the technology to farmers in the State

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A clean and healthy environment is paramount to human existence. While pesticide use has successfully sustained agricultural and food production in our lifetime as well as safeguarded human health by controlling insect pests, it has also caused many tragedies including population declines in our wildlife, fatalities in workers exposed to pesticides in its manufacture and use, and the increasing incidence of dreaded human illnesses such as cancer. A delicate balance should be achieved to mitigate the adverse impact of pesticide use to the environment and at the same time ensuring short- and long-term agricultural productivity. Endosulfan has been effectively used as a pesticide, but much evidence on its chronic and sub-lethal effects on humans and wildlife have been gathered in recent years. More research still needs to be done to determine its effects from long-term exposure at very low levels. Endosulfan is highly toxic to fish and other aquatic animals and, thus, not recommended for use in aquatic ecosystems. However, in some countries, it has been incorrectly used as a molluscicide in rice paddies, which could have an adverse impact on the rice-fish farming systems and on other surrounding aquatic ecosystems. It is clear that such practices should be stopped and users must strictly observe the recommended application methods. Agricultural productivity should be achieved with less pesticide by using integrated pest management programs which make use of biological, cultural, and physical control agents and lower doses of safer pesticide on a need only basis. The benefits of biotechnology should also be used to develop more effective and safer products and techniques. This is a valid approach and one that will require a unified and concerted effort among suppliers and users of pesticides in order to ensure that resources are used to our best advantage with minimal risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The context: Soil biodiversity and sustainable agriculture; Abstracts - Theme 1: Monitoring and assessment: Bioindicators of soil health: assessment and monitoring for sustainable agriculture; Practical tools to measure soil health and their use by farmers; Biological soil quality from biomass to biodiversity - importance and resilience to management stress and disturbance; Integrated management of plant-parasitic nematodes in maize-bean cropping systems; Microbial quantitative and qualitative changes in soils under different crops and tillage management systems in Brazil; Diversity in the rhizobia associated with Phaseolus vulgaris L: in Ecuador and comparisons with Mexican bean rhizobia; Sistemas integrados ganadería-agricultura en Cuba; Soil macrofauna as bioindicator of soil quality; Biological functioning of cerrado soils; Hydrolysis of fluorescein diacetate as a soil quality indicator in different pasture systems; Soil management and soil macrofauna communities at Embrapa Soybean, Londrina, Brazil; Soil macrofauna in a 24 - year old no-tillage system in Paraná, Brazil; Invertebrate macrofauna of soils inpastures under different forms of management in the cerrado (Brazil); Soil tillage modifies the invertebrate soil macrofauna community; Soil macrofauna in various tillage and land use systems on an oxisols near Londrina, Paraná, Brazil; Interference of agricultural systems on soil macrofauna; Scarab beetle-grub holes in various tillage and crop management systems at Embrapa Soybean, Londrina, Brazil; Biological management of agroecosystems; Soil biota and nutrient dynamics through litterfall in agroforestry system in Rondônia, Amazônia, Brazil; Soil-C stocks and earthworm diversity of native and introduced pastures in Veracruz, Mexico; Theme 2 : Adaptive management: Some thoughts on the effects and implications of the transition from weedy multi-crop to wead-free mono-crop systems in Africa; Towards sustainable agriculture with no-tillage and crop rotation systems in South Brazil; Effect of termites on crusted soil rehabilitation in the Sahel; Management of macrofauna in traditional and conventional agroforestry systems from India with special reference to termites and earthworms; Adaptive management for redeveloping traditional agroecosystems; Conservation and sustainable use of soil biodiversity: learning with master nature!; Convergence of sciences: inclusive technology innovation processes for better integrated crop/vegetation, soil and biodiversity management; Potential for increasing soil biodiversity in agroecosystems; Biological nitrogen fixation and sustainability in the tropics; Theme 3: Research and innovation: Plant flavonoids and cluster roots as modifiers of soil biodiversity; The significance of biological diversity in agricultural soil for disease suppressiveness and nutrient retention; Linking above - and belowground biodiversity: a comparison of agricultural systems; Insect-pests in biologically managed oil and crops: the experience at ICRISAT; Sistemas agricolas micorrizados en Cuba; The effect of velvetbean (Mucuna pruriens) on the tropical earthworm Balanteodrilus pearsei: a management option for maize crops in the Mexican humid tropics; The potential of earthworms and organic matter quality in the rehabilitation of tropical soils; Research and innovation in biological management of soil ecosystems; Application of biodynamic methods in the Egyptian cotton sector; Theme 4: Capacity building and mainstreaming: Soil ecology and biodiversity: a quick scan of its importance for government policy in The Netherlands; Agrotechnological transfer of legume inoculants in Eastern and Southern Africa; Agricultura urbana en Cuba; Soil carbon sequestration for sustaining agricultural production and improving the environment; Conservation and sustainable management of below-ground biodiversity: the TSBF-BGBD network project; The tropical soil biology and fertility institute of CIAT (TSBF); South-South initiative for training and capacity building for the management of soil biology/biodiversity; Strategies to facilititate development and adoption of integrated resource management for sustainable production and productivity improvement; The challenge program on biological nitrogen fixation (CPBNF); Living soil training for farmers: improving knowledge and skills in soil nutrition management; Do we need an inter-governmental panel on land and soil (IPLS)? Protection and sustainable use of biodiversity of soils; Cases Studies -- Plant parasitic nematodes associated with common bean (Phaseolus vulgaris L.) and integrated management approaches; Agrotechnological transfer of legume inoculants in Eastern and Southern Africa; Restoring soil fertility and enhancing productivity in Indian tea plantations with earthworms and organic fertilizers; Managing termites and organic resources to improve soil productivity in the Sahel; Overview and case studies on biological nitrogen fixation: perspectives and limitations; Soil biodiversity and sustainable agriculture: an overview.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The insect pathogen Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosos can be effective biocontrol agents when relative humidity (RH) is close to 100%. At reduced water availability, germination of propagules, and therefore host infection, cannot occur. Cultures of B. bassiana, M. anisopliae and P. farinosus were grown under different conditions to obtain conidia with a modified polyol and trehalose content. Conidia with higher intracellular concentrations of glycerol and erythritol germinated both more quickly and at lower water activity (a(w)) than those from other treatments. In contrast, conidia containing up to 235.7 mg trehalose g-1 germinated significantly (P < 0 05) more slowly than those with an equivalent polyol content but less trehalose, regardless of water availability. Conidia from control treatments did not germinate below 0.951 - 0.935 a(w) (≡ 95.1 - 93.5% RH). In contrast, conidia containing up to 164.6 mg glycerol plus erythritol g-1 germinated down to 0.887 a(w) (≡ 88.7% RH). These conidia germinated below the water availability at which mycelial growth ceases (0.930 - 0.920 a(w)). Germ tube extension rates reflected the percentage germination of conidia, so the most rapid germ tube growth occurred after treatments which produced conidia containing the most glycerol and erythritol. This study shows for the first time that manipulating polyol content can extend the range of water availability over which fungal propagules can germinate. Physiological manipulation of conidia may improve biological control of insect pests in the field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is currently an urgent need to increase global food security, reverse the trends of increasing cancer rates, protect environmental health, and mitigate climate change. Toward these ends, it is imperative to improve soil health and crop productivity, reduce food spoilage, reduce pesticide usage by increasing the use of biological control, optimize bioremediation of polluted sites, and generate energy from sustainable sources such as biofuels. This review focuses on fungi that can help provide solutions to such problems. We discuss key aspects of fungal stress biology in the context of the papers published in this Special Issue of Current Genetics. This area of biology has relevance to pure and applied research on fungal (and indeed other) systems, including biological control of insect pests, roles of saprotrophic fungi in agriculture and forestry, mycotoxin contamination of the food-supply chain, optimization of microbial fermentations including those used for bioethanol production, plant pathology, the limits of life on Earth, and astrobiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fungi play central roles in many biological processes, influencing soil fertility, decomposition, cycling of minerals, and organic matter, plant health, and nutrition. They produce a wide spectrum of molecules, which are exploited in a range of industrial processes to manufacture foods, food preservatives, flavoring agents, and other useful biological products. Fungi can also be used as biological control agents of microbial pathogens, nematodes or insect pests, and affect plant growth, stress tolerance, and nutrient acquisition. Successful exploitation of fungi requires better understanding of the mechanisms that fungi use to cope with stress as well as the way in which they mediate stress tolerance in other organisms. It is against this backdrop that a scientific meeting on fungal stress was held in São José dos Campos, Brazil, in October 2014. The meeting, hosted by Drauzio E. N. Rangel and Alene E. Alder-Rangel, and supported by the São Paulo Research Foundation (FAPESP), brought together more than 30 young, mid-career, and highly accomplished scientists from ten different countries. Here we summarize the highlights of the meeting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since 2004 several studies have been carried out in order to identify the main insect species that usually inhabiting the olive ecosystem. The field trials have taken place in two olive groves, one situated in Olhão and the other one in Loulé, both in Algarve and also under Integrated Pest Management (IPM). The sampling techniques used differ according to their purpose (sticky traps, pheromone traps, pitfall traps and samples of aerial parts of the trees such as inflorescences, leaves, fruits and branches). Results showed that the main insect pests of olive tree in southern Portugal were the olive fruit fly Bactrocera oleae Gmelin (Diptera: Tephritidae) and the olive moth Prays oleae Bernard (Lepidoptera: Hyponeumetidae). Other insect pests were also found in our olive groves namely the olive psyllid Euphyllura olivina Costa (Homoptera: Psyllidae), the olive dark beetle Phloeotribus scarabaeoides Bernard (Coleoptera: Curculionidae), the mediterranean black scale Saissetia oleae (Olivier) (Homoptera: Coccidae) and the olive thrip Liothripes oleae Costa (Thysanoptera: Phlaeothripidae). Concerning the auxiliary insects that were found in our olives groves they belong to the following orders and families: Diptera (Syrphidae), Coleoptera (Carabidae, Coccinelidae and Staphylinidae), Hemiptera (Anthocoridae and Miridae), Neuroptera (Chrysopidae) and Hymenoptera (Braconidae, Encyrtidae, Eulophidae, Formicidae and Trichogrammatidae).