904 resultados para inosine monophosphate dehydrogenase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation into the interactions between thiamine monophosphate (TMP) and anions has resulted in the preparation and X-ray characterization of the compounds (TMP)(Hg2Br5).0.5H(2)O (1) and (TMP)(2)(Hg3I8) (2). In each compound the TMP molecule exists as a monovalent cation in the usual F conformation. The halogenomercurate anions occur in two-dimensional (2-D) network in 1 or one-dimensional (1-D) chain in 2. In both 1 and 2, the structures consist of alternating cationic sheets of the hydrogen-bonded TMP molecules and anionic sheets of the polymeric halogenomercurate anions. The TMP molecule binds to the polymeric anions through the characteristic 'anion bridge I', C(2)-H..X...pyrimidinium (X = Br in 1 and 1 in 2), and electrostatic interactions between electropositive S(1) and halogen atoms. The 'anion bridge II' of the type N(4'1)-H...X...thiazolium (X = phosphate group) plays a role in stabilizing the molecular conformation. The biological implication of the host-guest-like complexation between TMP and polymeric anions is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anodic voltammetric behavior of inosine (I) was investigated by linar-sweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.1 mol/L N2HPO4, inosine showed a well defined anodic peak. The peak potential was about 1.42 V (vs. Ag/AgCl). A linear relationship held between the peak current and the concentration of inosine in the rang of 5 x 10(-4) similar to 8 x 10(-2) g/L. The peak potential decreased with the decrease of the acidity of the solution. The four anodic peaks of inosine with hypoxanthine, xanthine and uric acid were obtained. Their peak potentials were about at 1.42, 1.07, 0.72 and 0.26 Vt vs. Ag/AgCl). The method has been used for the direct determination of inosine in injections. Recoveries of inosine in urine samples were about 85%. Experimental result proved that the electrode reaction was diffusion-controlled and irreversible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of thiamine or thiamine monophosphate (TMP) with K2Pt(NO2)(4) afforded a metal complex, Pt(thiamine)(NO2)(3) (1), and two salt-type compounds, (H-thiamine)[Pt(NO2)(4)]. 2H(2)O (2) and (TMP)(2)[Pt(NO2)(4)]. 2H(2)O (3), which were structurally characterized by X-ray diffraction. In 1, the square-planar Pt2+ ion is coordinated to the pyrimidine N(1'), a usual metal-binding site, and three NO2- groups. The thiamine molecule exists as a monovalent cation in 1 and a divalent cation in 2 while the TMP molecule is a monovalent cation in 3. In each compound, thiamine or TMP adopts the usual F conformation and forms two types of host-guest-like interactions with anions, which are of the bridging forms, C(2)-H . . . anion . . . pyrimidine-ring and N(4'1)-H(...)anion(...)thiazolium-ring. In 3, there is an additional anion-bridging interaction between the pyrimidine and thiazolium rings of TMP, being of the form C(6')-H . . . anion . . . thiazolium-ring. The salts 2 and 3 show similar hydrogen-bonded cyclic dimers of thiamine or TMP between which the anions are held. Results are compared with those of the other thiamine-platinum complexes. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the effects of rare earth ions (La3+, Eu3+, Dy3+, Yb3+) and their complexes with calmodulin on the activity of lactate dehydrogenase (LDH) were investigated. The results reveal that whether binding with calmodulin or not, rare earth ions show a minor activation effects on LDH when their concentrations are less than 3 mu mol (.) L-1, but indicate some strong inhibitory effects on LDH activity when the concentrations are above 5 mu mol (.) L-1. Calmodulin, which is a calcium-dependent regulator, can stimulate LDH activity and release the inhibitory effects of rare earth ion. Diethylenetriamine pentaacetic acid(DTPA) and its derivatives bisdimethylamide-diethylenetriamine pentaacetic acid (DTPA-BDMA), bisisonicotinyl-diethylenetriamine pentaacetic acid (DTPA-BIN), which are often used as ligands to metal ions, inhibit LDH activity when their concentrations are above 5 mu mol (.) L-1. Calmodulin can also release their inhibitory effects at the same time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolytic cleavage of adenosine-3'-monophosphate (3'-AMP) and guanosine-3'-monophosphate (3'-GMP) by lanthanides was investigated by NMR, HPLC and the method of measuring the liberated inorganic phosphate. The results show that lanthanides have specificity for hydrolyzing 3'-mononucleotides. 3'-AMP and 3'-GMP were converted to Adenosine (A), phosphate and Guanosine (G),phosphate respectively at pH 9, 37 degrees C. The efficiency of cleavage was greater than that of 5'-mononucleotides. The mechanism of hydrolytic of cleavage was discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of adenosine-5'-monophosphate and deoxyadenosine-5'-monophosphate has been studied with lanthanide(III) metal complexes of 2-carboxyethylgermanium sesquioxide (Ge-132) by NMR and HPLC and by measuring the liberated inorganic phosphates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of adenosine-5'-monophosphate(5'-AMP) and guanosine-5'-monophosphate(5'-GMP) by lanthanides was investigated. 5'-AMP and 5'-GMP was efficiently hydrolyzed by cerium(III) chloride under air at pH 9 and 37 degrees C, and other lanthanides (III) showed less efficiency at the same condition. The hydrolysis rate of 5'-AMP by cerium was greater than that of 5'-GMP. UV spectra showed that Ce(III) was oxidized to Ce(IV) in the reaction mixture. The active species for the hydrolysis of 5'-AMP and 5'-GMP was ascribed to the Ce(IV) hydroxide cluster in the reaction mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 78-kDa glucose-regulated protein (GRP78) is ubiquitously expressed in many cell types. Its promoter contains multiple protein-binding sites and functional elements. In this study we examined a high affinity protein-binding site spanning bp -198 to -180 of the rat grp78 promoter, using nuclear extracts from both B-lymphoid and HeLa cells. This region contains a sequence TGACGTGA which, with the exception of one base, is identical to the cAMP-response element (CRE). Site-directed mutagenesis reveals that this sequence functions as a major basal level regulatory element in hamster fibroblast cells and is also necessary to maintain high promoter activity under stress-induced conditions. By gel mobility shift analysis, we detect two specific protein complexes. The major specific complex I, while immunologically distinct from the 42-kDa CRE-binding protein (CREB), binds most strongly to the grp site, but also exhibits affinity for the CRE consensus sequence. As such, complex I may consist of other members of the CREB/activating transcription factor protein family. The minor specific complex II consists of CREB or a protein antigenically related to it. A nonspecific complex III consists of the Ku autoantigen, an abundant 70- to 80-kDa protein complex in HeLa nuclear extracts. By cotransfection experiments, we demonstrate that in F9 teratocarcinoma cells, the grp78 promoter can be transactivated by the phosphorylated CREB or when the CREB-transfected cells are treated with the calcium ionophore A23187. The differential regulation of the grp78 gene by cAMP in specific cell types and tissues is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) catalyze the oxidative conversion of Δ5-3β-hydroxysteroids to the Δ4-3-keto configuration and is therefore essential for the biosynthesis of all classes of hormonal steroids, namely progesterone, glucocorticoids, mineralocorticoids, androgens, and estrogens. Using human 3β-HSD cDNA as probe, a human 3β-HSD gene was isolated from a λ-EMBL3 library of leucocyte genomic DNA. A fragment of 3β-HSD genomic DNA was also obtained by amplification of genomic DNA using the polymerase chain reaction. The 3β-HSD gene contains a 5′-untranslated exon of 53 base pairs (bp) and three successive translated exons of 232, 165, and 1218 bp, respectively, separated by introns of 129, 3883, and 2162 bp. The transcription start site is situated 267 nucleotides upstream from the ATG initiating codon. DNA sequence analysis of the 5′-flanking region reveals the existence of a putative TATA box (ATAAA) situated 28 nucleotides upstream from the transcription start site while a putative CAAT binding sequence is located 57 nucleotides upstream from the TATA box. Expression of a cDNA insert containing the coding region of 3β-HSD in nonsteroidogenic cells shows that the gene encodes a single 42-kDa protein containing both 3β-hydroxysteroid dehydrogenase and Δ5-Δ4-isomerase activities. Moreover, all natural steroid substrates tested are transformed with comparable efficiency by the enzyme. In addition to its importance for studies of the regulation of expression of 3β-HSD in gonadal as well as peripheral tissues, knowledge of the structure of the human 3β-HSD gene should permit investigation of the molecular defects responsible for 3β-HSD deficiency, the second most common cause of adrenal hyperplasia in children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complementary DNA encoding human 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (30-HSD) has been expressed in transfected GH4C1 with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of [3H]-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3β-HSD, the present study shows that 4MA (N,N-diethyl-4-rnethyl-3-oxo-4-aza-5α-androstane-17β-carboxamide) and its analogues inhibit DHEA oxidation competitively while they exert a noncompetitive inhibition of the isomerization of 5-androstenedione to 4-androstenedione with an approximately 1000-fold higher Ki value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3β-HSD protein. In addition, using 5α-dihydrotestosterone (DHT) and 5α-androstane-3β,17β-diol as substrates for dehydrogenase activity only, we have found that dehydrogenase activity is reversibly and competitively inhibited by 4MA. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration. © 1991 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently characterized two types of rat 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) isoenzymes expressed in adrenals and gonads. In addition, we have cloned a third type of cDNA encoding a predicted type III 3β-HSD protein specifically expressed in the male rat liver which shares 80% similarity with the two other isoenzymes. Transient expression in human HeLa cells of the cDNAs reveals that the type III 3β-HSD protein does not display oxidative activity for the classical substrates of 3β-HSD, in contrast to the type I 3β-HSD isoenzyme. However, in the presence of NADH, type III isoenzyme, in common with the type I isoform, converts 5α-androstane-3,17-dione (A-dione) and 5α-dihydrotestosterone (DHT) to the corresponding 3β-hydroxysteroids. In fact, the type I and the type III isoenzymes have the same affinity for DHT with K(m) values of 5.05 and 6.16 μM, respectively. When NADPH is used as cofactor, the affinity for DHT of the type III isoform becomes higher than that of the type I isoform with K(m) values of 0.12 and 1.18 μM, respectively. The type III isoform is thus a 3-ketoreductase using NADPH as preferred cofactor which is responsible for the conversion of 3-keto-saturated steroids such as DHT and A-dione into less active steroids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient expression in nonsteroidogenic mammalian cells of the rat wild type I and type II 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β- HSD) cDNAs shows that the encoded proteins, in addition to being able to catalyze the oxidation and isomerization of Δ5-3β-hydroxysteroid precursors into the corresponding Δ4-3-ketosteroids, interconvert 5α- dihydrotestosterone (DHT) and 5α-androstane-3β,17β-diol (3β-diol). When homogenate from cells transfected with a plasmid vector containing type I 3β-HSD is incubated in the presence of DHT using NAD+ as cofactor, a somewhat unexpected metabolite is formed, namely 5α-androstanedione (A- dione), thus indicating an intrinsic androgenic 17β-hydroxysteroid dehydrogenase (17β-HSD) activity of this 3β-HSD isoform. Although the relative Vmax of 17β-HSD activity is 14.9-fold lower than that of 3β-HSD activity, the Km value for the 17β-HSD activity of type I 3β-HSD is 7.97 μM, a value which is in the same range as the conversion of DHT into 3β- diol which shows a Km value of 4.02 μM. Interestingly, this 17β-HSD activity is highly predominant in unbroken cells in culture, thus supporting the physiological relevance of this 'secondary' activity. Such 17β-HSD activity is inhibited by the classical substrates of 3β-HSD, namely pregnenolone (PREG), dehydroepiandrosterone (DHEA), Δ5-androstene-3β,17β- diol (Δ5-diol), 5α-androstane-3β,17β-diol (3β-diol) and DHT, with IC50 values of 2.7, 1.0, 3.2, 6.2, and 6.3 μM, respectively. Although dual enzymatic activities have been previously reported for purified preparations of other steroidogenic enzymes, the present data demonstrate the multifunctional enzymatic activities associated with a recombinant oxidoreductase enzyme. In addition to its well known 3β-HSD activity, this enzyme possesses the ability to catalyze DHT into A-dione thus potentially controlling the level of the active androgen DHT in classical steroidogenic as well as peripheral intracrine tissues.