345 resultados para innervation périsomatique inhibitrice


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To evaluate cardiac electrical function in the Spectacled Flying Fox (bat) infested with Ixodes holocyclus. Design Prospective clinical investigation of bats treated for naturally occurring tick toxicity. Procedure ECGs were performed on bats with tick toxicity (n = 33), bats that recovered slowly (n = 5) and normally (n = 5) following treatment for tick toxicity, and on normal bats with no history of tick toxicity (n = 9). Results Bats with tick toxicity had significantly prolonged corrected QT intervals, bradycardia and rhythm disturbances which included sinus bradydysrhythmia, atrial standstill, ventricular premature complexes, and idioventricular bradydysrhythmia. Conclusions The QT prolongation observed on ECG traces of bats with tick toxicity reflected delayed ventricular repolarisation and predisposed to polymorphic ventricular tachycardia and sudden cardiac death in response to sympathetic stimulation. The inability to document ventricular tachycardia in bats shortly before death from tick toxicity may be explained by a lack of sympathetic responsiveness attributable to the unique parasympathetic innervation of the bat heart, or hypothermiainduced catecholamine receptor down-regulation. Bradycardia and rhythm disturbances may be attributable to hypothermia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: This paper aims to address some of the main possible applications of actual Nuclear Medicine Imaging techniques and methodologies in the specific context of Sports Medicine, namely in two critical systems: musculoskeletal and cardiovascular. Discussion: At the musculoskeletal level, bone scintigraphy techniques proved to be a mean of diagnosis of functional orientation and high sensibility compared with other morphological imaging techniques in the detection and temporal evaluation of pathological situations, for instance allowing the acquisition of information of great relevance in athletes with stress fractures. On the other hand, infection/inflammation studies might be of an important added value to characterize specific situations, early diagnose of potential critical issues – so giving opportunity to precise, complete and fast solutions – while allowing the evaluation and eventual optimization of training programs. At cardiovascular system level, Nuclear Medicine had proved to be crucial in differential diagnosis between cardiac hypertrophy secondary to physical activity (the so called "athlete's heart") and hypertrophic cardiomyopathy, in the diagnosis and prognosis of changes in cardiac function in athletes, as well as in direct - and non-invasive - in vivo visualization of sympathetic cardiac innervation, something that seems to take more and more importance nowadays, namely in order to try to avoid sudden death episodes at intense physical effort. Also the clinical application of Positron Emission Tomography (PET) has becoming more and more widely recognized as promising. Conclusions: It has been concluded that Nuclear Medicine can become an important application in Sports Medicine. Its well established capabilities to early detection of processes involving functional properties allied to its high sensibility and the actual technical possibilities (namely those related with hybrid imaging, that allows to add information provided by high resolution morphological imaging techniques, such as CT and/or MRI) make it a powerful diagnostic tool, claiming to be used on an each day higher range of clinical applications related with all levels of sport activities. Since the improvements at equipment characteristics and detection levels allows the use of smaller and smaller doses, so minimizing radiation exposure it is believed by the authors that the increase of the use of NM tools in the Sports Medicine area should be considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We administered arecoline to rats, with experimentally induced chagasic myocarditis, in order to study the sinus node sensitivity to a muscarinic agonist. Sixteen month old rats were inoculated with 200,000 T. cruzi parasites ("Y" strain). Between days 18 and 21 (acute stage), 8 infected rats and 8 age-matched controls received intravenous arecoline as a bolus injection at the following doses: 5.0, 10.0, 20.0, 40.0, and 80.0 mug/kg. Heart rate was recorded before, during and after each dose of arecoline. The remaining 8 infected animals and 8 controls were subjected to the same experimental procedure during the subacute stage, i.e., days 60 to 70 after inoculation. The baseline heart rate, of the animals studied during the acute stage (349 ± 68 bpm, mean ± SD), was higher than that of the controls (250 ± 50 bpm, p < 0.005). The heart rate changes were expressed as percentage changes over baseline values. A dose-response curve was constructed for each group of animals. Log scales were used to plot the systematically doubled doses of arecoline and the induced-heart rate changes. The slope of the regression line for the acutely infected animals (r = - 0.99, b =1.78) was not different from that for the control animals (r = - 0.97, b = 1.61). The infected animals studied during the subacute stage (r = - 0.99, b = 1.81) were also not different from the age-matched controls (r = - 0.99, b = 1.26, NS). Consequently, our results show no pharmacological evidence of postjunctional hypersensitivity to the muscarinic agonist arecoline. Therefore, these results indirectly suggest that the postganglionic parasympathetic innervation, of the sinus node of rats with autopsy proved chagasic myocarditis, is not irreversibly damaged by Trypanosoma cruzi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pain transmission at the spinal cord is modulated by descending actions that arise from supraspinal areas which collectively form the endogenous pain control system. Two key areas involved of the endogenous pain control system have a circunventricular location, namely the periaqueductal grey (PAG) and the locus coeruleus (LC). The PAG plays a crucial role in descending pain modulation as it conveys the input from higher brain centers to the spinal cord. As to the LC, it is involved in descending pain inhibition by direct noradrenergic projections to the spinal cord. In the context of neurological defects, several diseases may affect the structure and function of the brain. Hydrocephalus is a congenital or acquired disease characterized by an enlargement of the ventricles which leads to a distortion of the adjacent tissues, including the PAG and LC. Usually, patients suffering from hydrocephalus present dysfunctions in learning and memory and also motor deficits. It remains to be evaluated if lesions of the periventricular brain areas involved in pain control during hydrocephalus may affect descending pain control and, herein, affect pain responses. The studies included in the present thesis used an experimental model of hydrocephalus (the rat injected in the cisterna magna with kaolin) to study descending modulation of pain, focusing on the two circumventricular regions referred above (the PAG and the LC). In order to evaluate the effects of kaolin injection into the cisterna magna, we measured the degree of ventricular dilatation in sections encompassing the PAG by standard cytoarquitectonic stanings (thionin staining). For the LC, immunodetection of the noradrenaline-synthetizing enzyme tyrosine hydroxylase (TH) was performed, due to the noradrenergic nature of the LC neurons. In general, rats with kaolin-induced hydrocephalus presented a higher dilatation of the 4th ventricle, along with a tendency to a higher area of the PAG. Due to the validated role of detection the c-fos protooncogene as a marker of neuronal activation, we also studied neuronal activation in the several subnuclei which compose the PAG, namely the dorsomedial, dorsolateral, lateral and ventrolateral (VLPAG) parts. A decrease in the numbers of neurons immunoreactive for Fos protein (the product of activation of the c-fos protooncogene) was detected in rats injected with kaolin, whereas the remaining PAG subnuclei did not present changes in Fos-immunoreactive nuclei. Increases in the levels of TH in the LC, namely at the rostral parts of the nucleus, were detected in hydrocephalic animals. The following pain-related parameters were measured, namely 1) pain behavioural responses in a validated pain inflammatory test (the formalin test) and 2) the nociceptive activation of spinal cord neurons. A decrease in behavioral responses was detected in rats with kaolin-induced hydrocephalus was detected, namely in the second phase of the test (inflammatory phase). This is the phase of the formalin test in which the motor behaviour is less important, which is important since a semi-quantitative analysis of the motor performance of rats injected with kaolin indicates that these animals may present some motor impairments. Collectively, the results of the behavioral studies indicate that rats with kaolin-induced hydrocephalus exhibit hypoalgesia. A decrease in Fos expression was detected at the superficial dorsal layers of the spinal cord in rats with kaolin-induced hydrocephalus, further indicating that hydrocephalus decreases nociceptive responses. It remains to be ascertained if this is due to alterations in the PAG and LC in the rats with kaolin-induced hydrocephalus, which may affect descending pain modulation. It remains to be evaluated what are the mechanisms underlying the increased pain inhibition at the spinal dorsal horn in the hydrocephalus rats. Regarding the VLPAG, the decrease in neuronal activity may impair descending modulation. Since the LC has higher levels of TH in rats with kaolininduced hydrocephalus, which also appears to increase the noradrenergic innervation in the spinal dorsal horn, it is possible that an increase in the release of noradrenaline at the spinal cord accounts for pain inhibition. Our studies also determine the need to study in detail patients with hydrocephalus namely in what concerns their thresholds to pain and to perform imaging studies focused on the structure and function of pain control areas in the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Vagal activity is thought to influence atrial electrophysiological properties and play a role in the initiation and maintenance of atrial fibrillation (AF). In this study, we assessed the effects of acute vagal stimulation (vagus_stim) on atrial conduction times, atrial and pulmonary vein (PV) refractoriness, and vulnerability to induction of AF in the rabbit heart with intact autonomic innervation. METHODS: An open-chest epicardial approach was performed in 11 rabbits (New Zealand; 3.9-5.0 kg), anesthetized and artificially ventilated after neuromuscular blockade. A 3-lead ECG was obtained. Atrial electrograms were recorded along the atria, from right to left (four monopolar electrodes), together with a circular electrode adapted for proximal left PV assessment. Acute vagus nerve stimulation was obtained with bipolar electrodes (20 Hz). Epicardial activation was recorded in sinus rhythm, and the conduction time from right (RA) to left atrium (LA), and from RA to PVs, was measured in basal conditions and during vagus_stim. The atrial effective refractory period (ERP) and dispersion of refractoriness (Disp_A) were analyzed. Vulnerability to AF induction was assessed at the right (RAA) and left (LAA) atrial appendages and the PVs. Atrial stimulation (50 Hz) was performed alone or combined with vagus_stim. Heart rate and blood pressure were monitored. RESULTS: In basal conditions, there was a significant delay in conduction from RA to PVs, not influenced by vagus_stim, and the PV ERPs were shorter than those measured in LA and LAA, but without significant differences compared to RA and RAA. During vagus_stim, conduction times between RA and LA increased from 16+8 ms to 27+6 ms (p < 0.05) and ERPs shortened significantly in RA, LAA and LA (p < 0.05), but not in RAA. There were no significant differences in Disp_A. AF induction was reproducible in 45% of cases at 50 Hz and in 100% at 50 Hz+vagus_stim (p < 0.05). The duration of inducible AF increased from 1.0 +/- 0.2 s to 12.0 +/- 4.5 s with 50 Hz+vagus_stim (p < 0.01). AF lasted >10 s in 45.4% of rabbits during vagus_stim, and ceased after vagus_stim in 4 out of these 5 cases. In 3 animals, PV tachycardia, with fibrillatory conduction, induced with 50 Hz PV pacing during vagus_stim. CONCLUSIONS: Vagus_stim reduces interatrial conduction velocity and significantly shortens atrial ERP, contributing to the induction and duration of AF episodes in the in vivo rabbit heart. This model may be useful for the assessment of autonomic influence on the pathophysiology of AF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on Parkinson’s disease (PD) has mainly focused on the degeneration of the dopaminergic neurons of nigro-striatal (NS) pathway; also, post-mortem studies have demonstrated that the noradrenergic and the serotonergic transmitter systems are also affected (Jellinger, 1999). Degeneration of these neuronal cell bodies is generally thought to start prior to the loss of dopaminergic neurons in the NS pathway and precedes the appearance of the motor symptoms that are the “hallmark” of PD. Gastrointestinal (GI) motility is often disturbed in PD, manifesting chiefly as impaired gastric emptying and constipation. These GI dysfunction symptoms may be the result of a loss in noradrenergic and serotonergic innervation. GI deficits were evaluated using an organ bath technique. Groups treated with different combinations of neurotoxins (6-OHDA alone, 6-OHDA + pCA or 6-OHDA + DSP-4) presented significant differences in gut contractility compared to control groups. Since a substantial body of literature suggests the presence of an inflammatory process in parkinsonian state (Whitton, 2007), changes in pro-inflammatory cytokines in the gut were assessed using a cytokine microarray. It has been found in this work that groups with a combined dopaminergic and noradrenergic lesion have a significant increase in both expressions of IL-13 and VEGF. IL-6 also shows a decrease in treatment groups; however this decrease did not reach statistical significance. The therapeutic value of Exendin-4 (EX-4) was evaluated. It has been previously demonstrated that EX-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, is neuroprotective in rodent models of PD (Harkavyi et al., 2008). In this thesis it has been found that EX-4 was able to reverse a decrease in gut contractility obtained through intracerebral bilateral 6-OHDA injection. Although more studies are required, EX-4 could be used as a possible therapy for the GI symptoms prominent in the early stages of PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of studies in schizophrenic patients report a decrease of glutathione (GSH) in prefrontal cortex (PFC) and cerebrospinal fluid, a decrease in mRNA levels for two GSH synthesizing enzymes and a deficit in parvalbumin (PV) expression in a subclass of GABA neurons in PFC. GSH is an important redox regulator, and its deficit could be responsible for cortical anomalies, particularly in regions rich in dopamine innervation. We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons. Three populations of interneurons immunolabeled for calcium-binding proteins were analyzed quantitatively in 16-day-old rat brain sections. Treated rats showed specific reduction in parvalbumin immunoreactivity in the anterior cingulate cortex, but not for calbindin and calretinin. These results provide experimental evidence for the critical role of redox regulation in cortical development and validate this animal model used in schizophrenia research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue parasitism, inflammatory process (histologic methods) and sympathetic denervation (glyoxylic acid-induced histofluorescence for demonstration of catecholamines) were studied in the heart (atrium and verntricle) and the submandibular gland of rats infected with the Y strain of Trypanosoma cruzi. In the heart paralleling intense parasitism and inflammatory process, the sympathetic denervation started at day 6 of infection and at the end of the acute phase (day 20) practically no varicose nerve terminals were found in both myocardium and vessels. In the submandibular gland, in spite of the rarity of anastigote pseudocysts and the scarcity of inflammatory foci, slight to moderate (days 13-15 of infection) or moderate to severe denervation (day 20) was found. At day 120 of infection both organs exhibited normal pattern of sympathetic innervation and only the heart showed some inflammatory foci and rare psudocysts (ventricle). Our data suggest the involvement of circulating factors in the sympathetic denervation phenomena but indicate that local inflammatory process is, at least, an aggravating factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aujourd'hui, les problèmes des maladies infectieuses concernent l'émergence d'infections difficiles à traiter, telles que les infections associées aux implants et les infections fongiques invasives chez les patients immunodéprimés. L'objectif de cette thèse était de développer des stratégies pour l'éradication des biofilms bactériens (partie 1), ainsi que d'étudier des méthodes innovantes pour la détection microbienne, pour l'établissement de nouveaux tests de sensibilité (partie 2). Le traitement des infections associées aux implants est difficile car les biofilms bactériens peuvent résister à des niveaux élevés d'antibiotiques. A ce jour, il n'y a pas de traitement optimal défini contre des infections causées par des bactéries de prévalence moindre telles que Enterococcus faecalis ou Propionibacterium acnés. Dans un premier temps, nous avons démontré une excellente activité in vitro de la gentamicine sur une souche de E. faecalis en phase stationnaire de croissance Nous avons ensuite confirmé l'activité de la gentamicine sur un biofilm précoce en modèle expérimental animal à corps étranger avec un taux de guérison de 50%. De plus, les courbes de bactéricidie ainsi que les résultats de calorimétrie ont prouvé que l'ajout de gentamicine améliorait l'activité in vitro de la daptomycine, ainsi que celle de la vancomycine. In vivo, le schéma thérapeutique le plus efficace était l'association daptomycine/gentamicine avec un taux de guérison de 55%. En établissant une nouvelle méthode pour l'évaluation de l'activité des antimicrobiens vis-à-vis de micro-organismes en biofilm, nous avons démontré que le meilleur antibiotique actif sur les biofilms à P. acnés était la rifampicine, suivi par la penicilline G, la daptomycine et la ceftriaxone. Les études conduites en modèle expérimental animal ont confirmé l'activité de la rifampicine seule avec un taux de guérison 36%. Le meilleur schéma thérapeutique était au final l'association rifampicine/daptomycine avec un taux de guérison 63%. Les associations de rifampicine avec la vancomycine ou la levofloxacine présentaient des taux de guérisons respectivement de 46% et 25%. Nous avons ensuite étudié l'émergence in vitro de la résistance à la rifampicine chez P. acnés. Nous avons observé un taux de mutations de 10"9. La caractérisation moléculaire de la résistance chez les mutant-résistants a mis en évidence l'implication de 5 mutations ponctuelles dans les domaines I et II du gène rpoB. Ce type de mutations a déjà été décrit au préalable chez d'autres espèces bactériennes, corroborant ainsi la validité de nos résultats. La deuxième partie de cette thèse décrit une nouvelle méthode d'évaluation de l'efficacité des antifongiques basée sur des mesures de microcalorimétrie isotherme. En utilisant un microcalorimètre, la chaleur produite par la croissance microbienne peut être-mesurée en temps réel, très précisément. Nous avons évalué l'activité de l'amphotéricine B, des triazolés et des échinocandines sur différentes souches de Aspergillus spp. par microcalorimétrie. La présence d'amphotéricine Β ou de triazole retardait la production de chaleur de manière concentration-dépendante. En revanche, pour les échinochandines, seule une diminution le pic de « flux de chaleur » a été observé. La concordance entre la concentration minimale inhibitrice de chaleur (CMIC) et la CMI ou CEM (définie par CLSI M38A), avec une marge de 2 dilutions, était de 90% pour l'amphotéricine B, 100% pour le voriconazole, 90% pour le pozoconazole et 70% pour la caspofongine. La méthode a été utilisée pour définir la sensibilité aux antifongiques pour d'autres types de champignons filamenteux. Par détermination microcalorimétrique, l'amphotéricine B s'est avéré être l'agent le plus actif contre les Mucorales et les Fusarium spp.. et le voriconazole le plus actif contre les Scedosporium spp. Finalement, nous avons évalué l'activité d'associations d'antifongiques vis-à-vis de Aspergillus spp. Une meilleure activité antifongique était retrouvée avec l'amphotéricine B ou le voriconazole lorsque ces derniers étaient associés aux échinocandines vis-à-vis de A. fumigatus. L'association échinocandine/amphotéricine B a démontré une activité antifongique synergique vis-à-vis de A. terreus, contrairement à l'association échinocandine/voriconazole qui ne démontrait aucune amélioration significative de l'activité antifongique. - The diagnosis and treatment of infectious diseases are today increasingly challenged by the emergence of difficult-to-manage situations, such as infections associated with medical devices and invasive fungal infections, especially in immunocompromised patients. The aim of this thesis was to address these challenges by developing new strategies for eradication of biofilms of difficult-to-treat microorganisms (treatment, part 1) and investigating innovative methods for microbial detection and antimicrobial susceptibility testing (diagnosis, part 2). The first part of the thesis investigates antimicrobial treatment strategies for infections caused by two less investigated microorganisms, Enterococcus faecalis and Propionibacterium acnes, which are important pathogens causing implant-associated infections. The treatment of implant-associated infections is difficult in general due to reduced susceptibility of bacteria when present in biofilms. We demonstrated an excellent in vitro activity of gentamicin against E. faecalis in stationary growth- phase and were able to confirm the activity against "young" biofilms (3 hours) in an experimental foreign-body infection model (cure rate 50%). The addition of gentamicin improved the activity of daptomycin and vancomycin in vitro, as determined by time-kill curves and microcalorimetry. In vivo, the most efficient combination regimen was daptomycin plus gentamicin (cure rate 55%). Despite a short duration of infection, the cure rates were low, highlighting that enterococcal biofilms remain difficult to treat despite administration of newer antibiotics, such as daptomycin. By establishing a novel in vitro assay for evaluation of anti-biofilm activity (microcalorimetry), we demonstrated that rifampin was the most active antimicrobial against P. acnes biofilms, followed by penicillin G, daptomycin and ceftriaxone. In animal studies we confirmed the anti-biofilm activity of rifampin (cure rate 36% when administered alone), as well as in combination with daptomycin (cure rate 63%), whereas in combination with vancomycin or levofloxacin it showed lower cure rates (46% and 25%, respectively). We further investigated the emergence of rifampin resistance in P. acnes in vitro. Rifampin resistance progressively emerged during exposure to rifampin, if the bacterial concentration was high (108 cfu/ml) with a mutation rate of 10"9. In resistant isolates, five point mutations of the rpoB gene were found in cluster I and II, as previously described for staphylococci and other bacterial species. The second part of the thesis describes a novel real-time method for evaluation of antifungals against molds, based on measurements of the growth-related heat production by isothermal microcalorimetry. Current methods for evaluation of antifungal agents against molds, have several limitations, especially when combinations of antifungals are investigated. We evaluated the activity of amphotericin B, triazoles (voriconazole, posaconazole) and echinocandins (caspofungin and anidulafungin) against Aspergillus spp. by microcalorimetry. The presence of amphotericin Β or a triazole delayed the heat production in a concentration-dependent manner and the minimal heat inhibition concentration (MHIC) was determined as the lowest concentration inhibiting 50% of the heat produced at 48 h. Due to the different mechanism of action echinocandins, the MHIC for this antifungal class was determined as the lowest concentration lowering the heat-flow peak with 50%. Agreement within two 2-fold dilutions between MHIC and MIC or MEC (determined by CLSI M38A) was 90% for amphotericin B, 100% for voriconazole, 90% for posaconazole and 70% for caspofungin. We further evaluated our assay for antifungal susceptibility testing of non-Aspergillus molds. As determined by microcalorimetry, amphotericin Β was the most active agent against Mucorales and Fusarium spp., whereas voriconazole was the most active agent against Scedosporium spp. Finally, we evaluated the activity of antifungal combinations against Aspergillus spp. Against A. jumigatus, an improved activity of amphotericin Β and voriconazole was observed when combined with an echinocandin. Against A. terreus, an echinocandin showed a synergistic activity with amphotericin B, whereas in combination with voriconazole, no considerable improved activity was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research has suggested that exogenous opioid substances can have direct effects on cardiac muscle or influence neurotransmitter release via presynaptic modulation of neuronal inputs to the heart. In the present study, multiple-labelling immunohistochemistry was employed to determine the distribution of endogenous opioid peptides within the guinea-pig heart. Approximately 40% of cardiac ganglion cells contained immunoreactivity for dynorphin A (1-8), dynorphin A (1-17) and dynorphin B whilst 20% displayed leu-enkephalin immunoreactivity. Different populations of opioid-containing ganglion cells were identified according to the co-existence of opioid immunoreactivity with immunoreactivity for somatostatin and neuropeptide Y. Immunoreactivity for prodynorphin-derived peptides was observed in many sympathetic axons in the heart and was also observed, though to a lesser extent, in sensory axons. Leu-enkephalin immunoreactivity was observed in occasional sympathetic and sensory axons. No immunoreactivity was observed for met-enkephalin-arg-gly-leu or for beta-endorphin. These results demonstrate that prodynorphin-derived peptides are present in parasympathetic, sympathetic and sensory nerves within the heart, but suggest that only the prodynorphin gene is expressed in guinea-pig cardiac nerves. This study has shown that endogenous opioid peptides are well placed to regulate cardiac function via both autonomic and sensory pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé: Les organismes multicellulaires ont adopté diverses stratégies pour répondre aux stress auxquels ils sont exposés. Cette étude a exploré deux de ces stratégies l'inflammation en réponse à une invasion par un pathogène, et l'apoptose ou la survie en réponse aux dommages à l'ADN. L'interleukine-lß (IL-lß) est une importante cytokine inflammatoire. Elle est synthétisée sous forme d'un précurseur inactif et nécessite un clivage par la caspase-1 pour être activée. La caspase-1 elle-même est activée dans un complexe appelé inflammasome. Certains NLRs (Nod-like receptors), IPAF et les NALPs, sont capables de former des inflammasomes fonctionnels. Cette étude s'est intéressée au rôle d'un autre NLR structurellement proche, la protéine NAIP, dans la régulation de la caspase-1 et la maturation de l'IL-1 ß. NAIP est incorporé à l'inflammasome contenant NALP3 et est capable d'inhiber l'activation de la caspase-1 et la maturation de l'IL-lß. Cette fonction inhibitrice dépend des ses domaines BIR et est inhibée par ses LRRs. Le mécanisme exact d'inhibition reste à définir et la régulation de l'activation de NAIP est discutée. La deuxième partie de cette étude concerne la protéine PIDD. Cette protéine est impliquée avec RAIDD dans l'activation de la caspase-2, et est aussi capable, avec l'aide de RIP et de NEMO, d'activer NF-κB en réponse aux dommages à l'ADN. Deux isoformes de PIDD ont déjà été décrites dans la littérature, PIDD (isoforme 1) et LRDD (isoforme 2) et une troisième isoforme est rapportée ici. L'étude de l'expression de ces isoformes a montré qu'elles sont exprimées différemment dans les tissus et dans les lignées cellulaires, et que l'isoforme 3 est induite en réponse à un stress génotoxique. La caractérisation fonctionnelle a établi que les trois isoformes sont capables d'activer NF-κB, donc la survie, mais que seule l'isoforme 1 peut interagir avec RAIDD pour activer la caspase-2 et sensibiliser les cellules à la mort induite par un stress génotoxique. Le domaine intermédiaire de PIDD, situé entre le deuxième ZU5 et le DD est essentiel pour l'interaction entre PIDD et RAIDD et l'activation de la caspase-2 qui en découle. En conclusion, l'épissage différentiel de l'ARNm de PIDD permet la production d'au moins trois protéines possédant des fonctions agonistes ou antagonistes et qui peuvent participer au choix cellulaire entre survie et apoptose en réponse aux dommages à l'ADN. Summary: Multicellular organisms have evolved several strategies to cope with the stresses they encounter. The present study has explored two of these strategies: inflammation in response to a pathogenic invasion, and apoptosis or repair/survival in response to DNA damage. Interleukin-lß (IL-lß) is a key mediator of inflammation. It is synthesized as an inactive precursor and requires cleavage by caspase-1 to be activated. caspase-1 itself is activated in molecular platforms called inflammasomes, which can be formed by members of the NOD-like receptors (NLR) family, like IPAF and NALPs. This study has investigated the role of another NLR, the structurally related protein NAIP, in the regulation of caspase-1 activation and IL-lß maturation. An inhibitory role of NAIP on caspase-1 activation and IL-lß maturation was demonstrated, as well as NAIP incorporation in the NALP3 inflammasome. This inhibitory property relies on NAIP BIR domains and is inhibited by NAIP LRRs. The exact mechanism of NAIP-mediated caspase-1 activation remains to be elucidated and the regulation of NAIP activation is discussed. The second part of this study focused on the caspase-2 activating protein PIDD. This protein is known to mediate caspase-2 activation via RAIDD and to signal NF-κB via RIP and NEMO in response to DNA damage. Two isoforms of PIDD, PIDD (isoform 1) and LRDD (isoform 2), have already been reported and a third isoform is described here. Investigation of the expressional regulation of these isoforms indicated that they are differentially expressed in tissues and cell lines, and that isoform 3 mRNA levels are upregulated in response to genotoxic stress. Functional studies demonstrated that all three isoforms can activate NF-κB in response to DNA damage, but only isoform 1 is able to interact with RAIDD and activate caspase-2, sensitizing cells to genotoxic stress-induced cell death. The intermediate domain located between the second ZUS and the DD is essential for the interaction of PIDD and RAIDD and the subsequent caspase-2 activation. Thus the differential splicing of PIDD mRNA leads to the formation of at least thrée proteins with antagonizing/agonizing functions that could participate in determining cell fate in response to DNA damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin (Ang) II has for long been identified as a neuropeptide located within neurons and pathways of the central nervous system involved in the control of thirst and cardio-vascular homeostasis. The presence of Ang II in ganglionic neurons of celiac, dorsal root, and trigeminal ganglia has only recently been described in humans and rats. Ang II-containing fibers were also found in the mesenteric artery and the heart, together with intrinsic Ang II-containing cardiac neurons. Ganglionic neurons express angiotensinogen and co-localize it with Ang II. Its intraneuronal production as a neuropeptide appears to involve angiotensinogen processing enzymes other than renin. Immunocytochemical and gene expression data suggest that neuronal Ang II acts as a neuromodulatory peptide and co-transmitter in the peripheral autonomic, and also sensory nervous system. Neuronal Ang II probably competes with humoral Ang II for effector cell activation. Its functional role, however, still remains to be determined. Angiotensinergic neurotransmission in the autonomic nervous system is a potential new target for therapeutic interventions in many common diseases such as essential hypertension, heart failure, and cardiac arrhythmia.