1000 resultados para industrial residues
Resumo:
Mode of access: Internet.
Resumo:
The residues generation is a quite serious problem in several industrial areas and also in the lumbering area. The search for the elimination or reduction of the volume of generated residues is endless, however limited, resulting in the search for a proper destination or better use, instead of simply burning it. A lot of uses and services are commonly proposed, but with low aggregated value to the residue. This work shows the usage viability of different discarded residues and wood composites in the production of an electric guitar. Cupiuba, ipe and jatoba residues have been used besides wood composites of pinus. The residues and wood composites have shown appropriate resistance, surfacing quality and design terms, and could be used to substitute the traditionally wood used in the production of the instrument as well as in other products of similar characteristics and with larger aggregated value.
Resumo:
Espresso spent coffee grounds were chemically characterized to predict their potential, as a source of bioactive compounds, by comparison with the ones from the soluble coffee industry. Sampling included a total of 50 samples from 14 trademarks, collected in several coffee shops and prepared with distinct coffee machines. A high compositional variability was verified, particularly with regard to such water-soluble components as caffeine, total chlorogenic acids (CGA), and minerals, supported by strong positive correlations with total soluble solids retained. This is a direct consequence of the reduced extraction efficiency during espresso coffee preparation, leaving a significant pool of bioactivity retained in the extracted grounds. Besides the lipid (12.5%) and nitrogen (2.3%) contents, similar to those of industrial coffee residues, the CGA content (478.9 mg/100 g), for its antioxidant capacity, and its caffeine content (452.6 mg/100 g), due to its extensive use in the food and pharmaceutical industries, justify the selective assembly of this residue for subsequent use.
Resumo:
The industrial activity is inevitably associated with a certain degradation of the environmental quality, because is not possible to guarantee that a manufacturing process can be totally innocuous. The eco-efficiency concept is globally accepted as a philosophy of entreprise management, that encourages the companies to become more competitive, innovative and environmentally responsible by promoting the link between its companies objectives for excellence and its objectives of environmental excellence issues. This link imposes the creation of an organizational methodology where the performance of the company is concordant with the sustainable development. The main propose of this project is to apply the concept of eco-efficiency to the particular case of the metallurgical and metal workshop industries through the development of the particular indicators needed and to produce a manual of procedures for implementation of the accurate solution.
Resumo:
Spent coffee grounds (SCG) are usually disposed as common garbage, without specific reuse strategies implemented so far. Due to its recognised richness in bioactive compounds, the effect of SCG on lettuce’s macro- and micro-elements was assessed to define its effectiveness for agro industrial reuse. A greenhouse pot experiment was conducted with different amounts of fresh and composted spent coffee, and potassium, magnesium, phosphorous, calcium, sodium, iron, manganese, zinc and copper were analysed. A progressive decrease on all lettuce mineral elements was verified with the increase of fresh spent coffee, except for potassium. In opposition, an increment of lettuce’s essential macro-elements was verified when low amounts of composted spent coffee were applied (5%, v/v), increasing potassium content by 40%, manganese by 30%, magnesium by 20%, and sodium by 10%, of nutritional relevance This practical approach offers an alternative reuse for this by-product, extendable to other crops, providing value-added vegetable products.
Resumo:
XXXVI IAHS World Congress on Housing - National Housing Programs-New Visions, November 03–07, 2008, Kolkata, India
Resumo:
Dissertation presented to obtain the Ph.D degree in Engineering Sciences and Technology
Resumo:
Countries are currently faced with problems derived from changes in lifespan and an increase in lifestyle-related diseases. Neurodegenerative disorders such Parkinson’s (PD) and Alzheimer’s (AD) diseases are an increasing problem in aged societies. Data from World Alzheimer Report 2011 indicate that 36 million people worldwide are living with dementia. Oxidative stress has been associated with the development of AD and PD. Therefore there is interest to search for effective compounds or therapies to combat the oxidative damage in these diseases. Current evidence strongly supports a contribution of phenolic compounds present in fruits and vegetables to the prevention of neurodegenerative diseases such AD and PD. The industrial processing of a wide variety of fruits results in the accumulation of by-products without commercial value. Opuntia ficus-indica (cactus pear) is consumed fresh and processed like in juice. Prunnus avium (sweet cherry) is consumed fresh but the organoleptics characteristics of the fruits leads to the smaller and ragged fruits have no commercial value. Fruit extracts of both species has described to be rich in phenolic compounds and to have high antioxidant activities due to its composition. The aim of this work was assessing the efficacy of O. ficus-indica and P. avium by-products extracts obtained with conventional solvent extraction and pressurized liquid extraction in a neurodegeneration cell model. All extracts have protected neuroblastoma cells from H2O2-induced death at low, non-toxic levels, which approach to physiologically-relevant serum concentration. However, cherry extract has a slighter neuroprotective activity. The protective effect of Opuntia extracts are not conducted by a direct antioxidant activity since there are not decreases in intracellular ROS levels in cell treated with extracts and challenged with H2O2, while cherry extract neuroprotection seems to be due to a direct scavenging activity. Extracts from different biological matrixes seems to protect neuronal cells trough different cellular mechanisms.
Resumo:
La producción de los cultivos está afectada por factores bióticos entre los que se destacan las enfermedades, malezas y plagas, por esto es de importancia el uso de plaguicidas que permitan mantener la producción. Sin embargo, estos productos constituyen un serio riesgo para la salud si no se aplican adecuadamente a fin de no dejar residuos en los granos. La introducción de marcos regulatorios cada vez más estrictos constituyen una barrera para las exportaciones actuales y futuras. El sistema agrícola-industrial argentino no cuenta aún con suficiente información para implementar las medidas adecuadas para prevenir la contaminación de granos con plaguicidas en pre y postcosecha. Se hipotetiza que la residualidad de plaguicidas en granos de soja en la Región Centro de Córdoba está influenciada por factores tanto tecnológicos como ambientales. La evaluación de la importancia relativa de estos factores permite sugerir estrategias de manejo adecuadas para asegurar niveles de residuos por debajo de los límites máximos permitidos. Se plantea como objetivo general identificar los factores tecnológicos (tecnología del cultivo, propiedades fisico-químicas de los plaguicidas, tecnología de aplicación) y sus interacciones, que inciden a campo y en postcosecha sobre el nivel de residuos de insecticidas en granos de soja, en la Región Centro de Córdoba. Como objetivos específicos se pretende cuantificar los residuos que generan las aplicaciones habituales de insecticidas, evaluar la influencia de los diferentes factores tecnológicos y sus interacciones sobre los niveles de residuos y adecuar curvas de disipación de plaguicidas a las condiciones de la región. También aportar conocimientos e información sobre el tema y sugerir prácticas de manejo que reduzcan los niveles de residuos, asegurando la calidad e inocuidad de los alimentos. Para el logro de estos objetivos se realizarán ensayos de evaluación de insecticidas a campo y en postcosecha en la localidad de Manfredi, Provincia de Córdoba, durante dos temporadas agrícolas. Se evaluarán distintas dosis y momentos de aplicación de los insecticidas endosulfán, clorpirifós+cipermetrina y fenitrotión en los ensayos a campo y fenitrotión, esfenvalerato, clorpirifós, deltametrina, DDVP y pirimifós metil en postcosecha. Con endosulfan se realizarán ensayos adecuados para el desarrollo de curvas de disipación. La determinación de residuos de plaguicidas se realizará utilizando determinación de multiresiduos a través cromatografía. Las curvas de disipación para endosulfan se ajustarán a través de modelos no lineales. Los conocimientos e información respecto a la influencia de los factores tecnológicos y sus interacciones sobre el nivel de residuos de plaguicidas en granos de soja, generados como resultados del presente proyecto, serán de utilidad para enriquecer las bases científico-técnicas en el tema y enfrentar el problema de la contaminación de granos con plaguicidas. Identificar la influencia de los factores tecnológicos y sus interacciones permitirá desarrollar prácticas de manejo tendientes a obtener productos con un nivel de residuos por debajo de los límites permitidos. La adecuación de curvas de disipación de plaguicidas a la Región Centro de Córdoba, permitirá efectuar predicciones sobre el contenido de residuos a causa de un tratamiento en un momento dado, conocer la importancia de las distintas variables y la posibilidad de variarlas para disminuir el nivel de residuos en los granos. Es importante profundizar sobre este tema ya que no existe la cantidad de información suficiente para enfrentar el problema de la contaminación por plaguicidas en nuestros sistemas productivos. Esta información es necesaria para poder garantizar la calidad e inocuidad de los alimentos tanto para el comercio interno como externo, asegurando la permanencia de los productos argentinos en los mercados internacionales.
Resumo:
The hydrogen and oxygen isotopes of water and the carbon isotope composition of dissolved inorganic carbon (DIC) from different aquifers at an industrial site, highly contaminated by organic pollutants representing residues of the former gas production, have been used as natural tracers to characterize the hydrologic system. On the basis of their stable isotope compositions as well as the seasonal variations, different groups of waters (precipitation, surface waters, groundwaters and mineral waters) as well as seasonably variable processes of mixing between these waters can clearly be distinguished. In addition, reservoir effects and infiltration rates can be estimated. In the northern part of the site an influence of uprising mineral waters within the Quaternary aquifers, presumably along a fault zone, can be recognized. Marginal infiltration from the Neckar River in the cast and surface water infiltration adjacent to a steep hill on the western edge of the site with an infiltration rate of about one month can also be resolved through the seasonal variation. Quaternary aquifers closer to the centre of the site show no seasonal variations, except for one borehole close to a former mill channel and another borehole adjacent to a rain water channel. Distinct carbon isotope compositions and concentrations of DIC for these different groups of waters reflect variable influence of different components of the natural carbon cycle: dissolution of marine carbonates in the mineral waters, biogenic, soil-derived CO2 in ground- and surface waters, as well as additional influence of atmospheric CO2 for the surface waters. Many Quaternary aquifer waters have, however, distinctly lower delta(13)C(DIC) values and higher DIC concentrations compared to those expected for natural waters. Given the location of contaminated groundwaters at this site but also in the industrially well-developed valley outside of this site, the most likely source for the low C-13(DIC) values is a biodegradation of anthropogenic organic substances, in particular the tar oils at the site.
Resumo:
Microbial processes have been used as indicators of soil quality, due to the high sensitivity to small changes in management to evaluate, e.g., the impact of applying organic residues to the soil. In an experiment in a completely randomized factorial design 6 x 13 + 4, (pot without soil and residue or absolute control) the effect of following organic wastes was evaluated: pulp mill sludge, petrochemical complex sludge, municipal sewage sludge, dairy factory sewage sludge, waste from pulp industry and control (soil without organic waste) after 2, 4, 6, 12, 14, 20, 28, 36, 44, 60, 74, 86, and 98 days of incubation on some soil microbial properties, with four replications. The soil microbial activity was highly sensitive to the carbon/nitrogen ratio of the organic wastes. The amount of mineralized carbon was proportional to the quantity of soil-applied carbon. The average carbon dioxide emanating from the soil with pulp mill sludge, corresponding to soil basal respiration, was 0.141 mg C-CO2 100 g-1 soil h-1. This value is 6.4 times higher than in the control, resulting in a significant increase in the metabolic quotient from 0.005 in the control to 0.025 mg C-CO2 g-1 Cmic h-1 in the soil with pulp mill sludge. The metabolic quotient in the other treatments did not differ from the control (p < 0.01), demonstrating that these organic wastes cause no disturbance in the microbial community.
Resumo:
Finland has large forest fuel resources. However, the use of forest fuels for energy production has been low, except for small-scale use in heating. According to national action plans and programs related to wood energy promotion, the utilization of such resources will be multiplied over the next few years. The most significant part of this growth will be based on the utilization of forest fuels, produced from logging residues of regeneration fellings, in industrial and municipal power and heating plants. Availability of logging residues was analyzed by means of resource and demand approaches in order to identify the most suitable regions with focus on increasing the forest fuel usage. The analysis included availability and supply cost comparisons between power plant sites and resource allocation in a least cost manner, and between a predefined power plant structure under demand and supply constraints. Spatial analysis of worksite factors and regional geographies were carried out using the GIS-model environment via geoprocessing and cartographic modeling tools. According to the results of analyses, the cost competitiveness of forest fuel supply should be improved in order to achieve the designed objectives in the near future. Availability and supply costs of forest fuels varied spatially and were very sensitive to worksite factors and transport distances. According to the site-specific analysis the supply potential between differentlocations can be multifold. However, due to technical and economical reasons ofthe fuel supply and dense power plant infrastructure, the supply potential is limited at plant level. Therefore, the potential and supply cost calculations aredepending on site-specific matters, where regional characteristics of resourcesand infrastructure should be taken into consideration, for example by using a GIS-modeling approach constructed in this study.
Resumo:
REVIEW: Living organisms encountered in hostile environments that are characterized by extreme temperatures rely on novel molecular mechanisms to enhance the thermal stability of their proteins, nucleic acids, lipids and cell membranes. Proteins isolated from thermophilic organisms usually exhibit higher intrinsic thermal stabilities than their counterparts isolated from mesophilic organisms. Although the molecular basis of protein thermostability is only partially understood, structural studies have suggested that the factors that may contribute to enhance protein thermostability mainly include hydrophobic packing, enhanced secondary structure propensity, helix dipole stabilization, absence of residues sensitive to oxidation or deamination, and increased electrostatic interactions. Thermostable enzymes such as amylases, xylanases and pectinases isolated from thermophilic organisms are potentially of interest in the optimization of industrial processes due to their enhanced stability. In the present review, an attempt is made to delineate the structural factors that increase enzyme thermostability and to document the research results in the production of these enzymes.
Resumo:
Tillgången på traditionella biobränslen är begränsad och därför behöver man ta fram nya, tidigare outnyttjade biobränslen för att möta de uppställda CO2 emissionsmålen av EU och det ständigt ökande energibehovet. Under de senare åren har intresset riktats mot termisk energiutvinning ur olika restfraktioner och avfall. Vid produktion av fordonsbränsle ur biomassa är den fasta restprodukten ofta den största procesströmmen i produktionsanläggningen. En riktig hantering av restprodukterna skulle göra produktionen mera lönsam och mer ekologiskt hållbar. Ett alternativ är att genom förbränning producera elektricitet och/eller värme eftersom dessa restprodukter anses som CO2-neutrala. Målsättningen med den här avhandlingen var att studera förbränningsegenskaperna hos några fasta restprodukter som uppstår vid framställning av förnybara fordonsbränslen. De fyra undersökta materialen är rapskaka, palmkärnskaka, torkad drank och stabiliserat rötslam. I studien används ett stort urval av undersökningsmetoder, från laboratorieskala till fullskalig förbränning, för att identifiera de huvudsakliga utmaningarna förknippade med förbränning av restprodukterna i pannor med fluidiserad bäddteknik. Med hjälp av detaljerad bränslekarakterisering kunde restprodukterna konstateras vara en värdefull källa för värme- och elproduktion. Den kemiska sammansättningen av restprodukterna varierar stort jämfört med mera traditionellt använda biobränslen. En gemensam faktor för alla de studerade restprodukterna är en hög fosforhalt. På grund av de låga fosforkoncentrationerna i de traditionella biobränslena har grundämnet hittills inte ansetts spela någon större roll i askkemin. Experimenten visade nu att fosfor inte mera kan försummas då man studerar kemin i förbränningsprocesser, då allt flera fosforrika bränslen tränger in på energimarknaden.
Resumo:
Laser cutting implementation possibilities into paper making machine was studied as the main objective of the work. Laser cutting technology application was considered as a replacement tool for conventional cutting methods used in paper making machines for longitudinal cutting such as edge trimming at different paper making process and tambour roll slitting. Laser cutting of paper was tested in 70’s for the first time. Since then, laser cutting and processing has been applied for paper materials with different level of success in industry. Laser cutting can be employed for longitudinal cutting of paper web in machine direction. The most common conventional cutting methods include water jet cutting and rotating slitting blades applied in paper making machines. Cutting with CO2 laser fulfils basic requirements for cutting quality, applicability to material and cutting speeds in all locations where longitudinal cutting is needed. Literature review provided description of advantages, disadvantages and challenges of laser technology when it was applied for cutting of paper material with particular attention to cutting of moving paper web. Based on studied laser cutting capabilities and problem definition of conventional cutting technologies, preliminary selection of the most promising application area was carried out. Laser cutting (trimming) of paper web edges in wet end was estimated to be the most promising area where it can be implemented. This assumption was made on the basis of rate of web breaks occurrence. It was found that up to 64 % of total number of web breaks occurred in wet end, particularly in location of so called open draws where paper web was transferred unsupported by wire or felt. Distribution of web breaks in machine cross direction revealed that defects of paper web edge was the main reason of tearing initiation and consequent web break. The assumption was made that laser cutting was capable of improvement of laser cut edge tensile strength due to high cutting quality and sealing effect of the edge after laser cutting. Studies of laser ablation of cellulose supported this claim. Linear energy needed for cutting was calculated with regard to paper web properties in intended laser cutting location. Calculated linear cutting energy was verified with series of laser cutting. Practically obtained laser energy needed for cutting deviated from calculated values. This could be explained by difference in heat transfer via radiation in laser cutting and different absorption characteristics of dry and moist paper material. Laser cut samples (both dry and moist (dry matter content about 25-40%)) were tested for strength properties. It was shown that tensile strength and strain break of laser cut samples are similar to corresponding values of non-laser cut samples. Chosen method, however, did not address tensile strength of laser cut edge in particular. Thus, the assumption of improving strength properties with laser cutting was not fully proved. Laser cutting effect on possible pollution of mill broke (recycling of trimmed edge) was carried out. Laser cut samples (both dry and moist) were tested on the content of dirt particles. The tests revealed that accumulation of dust particles on the surface of moist samples can take place. This has to be taken into account to prevent contamination of pulp suspension when trim waste is recycled. Material loss due to evaporation during laser cutting and amount of solid residues after cutting were evaluated. Edge trimming with laser would result in 0.25 kg/h of solid residues and 2.5 kg/h of lost material due to evaporation. Schemes of laser cutting implementation and needed laser equipment were discussed. Generally, laser cutting system would require two laser sources (one laser source for each cutting zone), set of beam transfer and focusing optics and cutting heads. In order to increase reliability of system, it was suggested that each laser source would have double capacity. That would allow to perform cutting employing one laser source working at full capacity for both cutting zones. Laser technology is in required level at the moment and do not require additional development. Moreover, capacity of speed increase is high due to availability high power laser sources what can support the tendency of speed increase of paper making machines. Laser cutting system would require special roll to maintain cutting. The scheme of such roll was proposed as well as roll integration into paper making machine. Laser cutting can be done in location of central roll in press section, before so-called open draw where many web breaks occur, where it has potential to improve runability of a paper making machine. Economic performance of laser cutting was done as comparison of laser cutting system and water jet cutting working in the same conditions. It was revealed that laser cutting would still be about two times more expensive compared to water jet cutting. This is mainly due to high investment cost of laser equipment and poor energy efficiency of CO2 lasers. Another factor is that laser cutting causes material loss due to evaporation whereas water jet cutting almost does not cause material loss. Despite difficulties of laser cutting implementation in paper making machine, its implementation can be beneficial. The crucial role in that is possibility to improve cut edge strength properties and consequently reduce number of web breaks. Capacity of laser cutting to maintain cutting speeds which exceed current speeds of paper making machines what is another argument to consider laser cutting technology in design of new high speed paper making machines.