926 resultados para industrial engineering


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the present study is to develop the reaction mechanism and kinetics of photoreduction of NO by CO. For this purpose, the reactions were conducted in the presence of Pd-ion-substituted nano-TiO2, Ti1-xPdxO2-delta, which was synthesized via a solution combustion method. The photocatalytic activity was investigated with unsubstituted TiO2, 1% Pd/TiO2(imp), and Ti1-xPdxO2-delta (where x = 0.05-0.3). No appreciable NO conversion was observed over unsubstituted TiO2, although, despite competitive adsorption of NO and CO on the Pd2+ sites, there was a significant reduction of NO over Ti1-xPdxO2-delta. The kinetic model showed that the enhanced catalytic activity is due to the NO photodissociation at the oxide-ion vacancy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inventory management (IM) has a decisive role in the enhancement of manufacturing industry's competitiveness. Therefore, major manufacturing industries are following IM practices with the intention of improving their performance. However, the effort to introduce IM in SMEs is very limited due to lack of initiation, expertise, and financial constraints. This paper aims to provide a guideline for entrepreneurs in enhancing their IM performance, as it presents the results of a survey based study carried out for machine tool Small and Medium Enterprises (SMEs) in Bangalore. Having established the significance of inventory as an input, we probed the relationship between IM performance and economic performance of these SMEs. To the extent possible all the factors of production and performance indicators were deliberately considered in pure economic terms. All economic performance indicators adopted seem to have a positive and significant association with IM performance in SMEs. On the whole, we found that SMEs which are IM efficient are likely to perform better on the economic front also and experience higher returns to scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A central composite rotatable experimental design was constructed for a statistical study of the ethylation of benzene in the liquid phase, with aluminum chloride catalyst, in an agitated tank system. The conversion of benzene and ethylene and the yield of monoethyl- and diethylbenzene are characterized by the response surface technique. In the experimental range studied, agitation rate has no significant effect. Catalyst concentration, rate of ethylene Flow, and temperature are the influential factors. The response surfaces may be adequately approximated by planes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study of atomization has been made with an external mixing-type pneumatic atomizer. The drops were sampled on Vaseline-coated cells using a shutter arrangement and their sizes were measured under a microscope. The effects of liquid viscosity, liquid surface tension, liquid flow rate, air velocity, and nozzle angle on drop size have been studied. A model, which explains adequately the influence of various factors, has been proposed. This model predicts the values of average drop sizes over a wide range of operating conditions. The model also explains the data of other investigators who have used other kinds of pneumatic atomizers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquid-phase homogeneous catalytic oxidation of styrene with Wilkinson complex by molecular oxygen in toluene medium gave selectively benzaldehyde and formaldehyde as the primary products. Higher temperatures and styrene conversions eventually led to acid formation due to co-oxidation of aldehyde.A reaction induction period and an initiation period, typical of free-radical reactions, characterized the oxidation process. The effects of temperature and catalyst and styrene concentrations on the conversion of styrene to benzaldehyde and acid formation have been studied. The optimum reaction parameters have been determined as a styrene-to-solvent mole ratio of 0.5, a catalyst-to-styrene mole ratio of 5.0 X lo4, and a reaction temperature of 75 "C. A reaction scheme based upon free-radical mechanism yielded a pseudo-first-order model which agreed well with the observed kinetic data in the absence of co-oxidation of aldehyde. A second-order model was found to fit the experimental data better in the case of aldehyde conversion to acid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ultrasonic degradation of two dyes, Rhodamine B (C28H31ClN2O3) and Rhodamine Blue (C28H32N2O3), were studied in the absence of catalyst and in the presence of two catalysts (combustion-synthesized anatase TiO2 and commercial Degussa P-25 TiO2. The rate of degradation of catalyzed reaction was higher than that obtained with in the absence of the catalysts. Among the catalysts, combustion-synthesized anatase TiO2 degraded the dyes faster when compared to the degradation with commercial Degussa P-25 catalyst. A Langmuir-Hinshelwood kinetic model was developed and the kinetic rate parameters were determined. The effect of other operating parameters, such as initial concentration, pH, temperature, and power intensity, was also investigated. The degradation rate increased with decreasing pH, increasing temperature, and higher intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructural evolution on aging a Co-3 wt pct Ti-2 wt pct Nb alloy has been followed by transmission electron microscopy and diffraction to show that the solid solution decomposed by the spinodal mode. The strengthening observed has been correlated with the differences in lattice parameters of the coexisting phases. The several stages of coarsening have been documented to yield information about their kinetics and morphological changes.Formerly Visiting Assistant Professor, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, is with .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ultrasonic degradation of two dyes, Rhodamine B (C28H31ClN2O3) and Rhodamine Blue (C28H32N2O3), were studied in the absence of catalyst and in the presence of two catalysts (combustion-synthesized anatase TiO2 and commercial Degussa P-25 TiO2. The rate of degradation of catalyzed reaction was higher than that obtained with in the absence of the catalysts. Among the catalysts, combustion-synthesized anatase TiO2 degraded the dyes faster when compared to the degradation with commercial Degussa P-25 catalyst. A Langmuir-Hinshelwood kinetic model was developed and the kinetic rate parameters were determined. The effect of other operating parameters, such as initial concentration, pH, temperature, and power intensity, was also investigated. The degradation rate increased with decreasing pH, increasing temperature, and higher intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TiO2 (anatase) was synthesized using a microwave-irradiation-assisted chemical method. The reaction conditions were varied to obtain unique nanostructures of TiO2 comprising nanometric spheres giving the materials a very porous morphology. The oxide was characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The specific surface area and porosity were quantified by the BET method, and the degradation of dyes was carried out using these materials. The photocatalytic activity of the nanometric TiO2 was significantly higher than that of commercially available TiO2 (Degussa P25) for the degradation of the dyes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The major contribution of this paper is to introduce load compatibility constraints in the mathematical model for the capacitated vehicle routing problem with pickup and deliveries. The employee transportation problem in the Indian call centers and transportation of hazardous materials provided the motivation for this variation. In this paper we develop a integer programming model for the vehicle routing problem with load compatibility constraints. Specifically two types of load compatability constraints are introduced, namely mutual exclusion and conditional exclusion. The model is demonstrated with an application from the employee transportation problem in the Indian call centers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the study was to investigate the effects of the nature of solvent and polymer concentration on the mass-transfer coefficients in desorption of solvents and to develop a correlation to predict them. Desorption was experimentally studied in a Lewis cell with concentrated binary solutions of polymer in good and poor solvents. The range of parameters covered are polymer weight fraction between 0.25 and 0.6, Reynolds number between 3 and 100; Schmidt number between 1.4 X lo6 and 2.5 X lo8, and Sherwood number between 3.5 X lo2 and 1.2 X lo4. Desorption from moderately concentrated solutions (polymer weight fraction -0.25) is gas-phase controlled. Studies with more concentrated solutions showed that the effects of solvent and concentration were such that corrections due to concentration-dependent diffusivity and viscosity as well as high flux had to be applied to the mass-transfer coefficients before they could be correlated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Equilibrium of dissolution of sulfur dioxide at ppm levels in aqueous solutions of dilute sulfuric acid is analyzed, and a general expression is derived relating the total concentration of sulfur dioxide in the liquid phase to the partial pressure of SO2 in the gas and to the concentration of sulfuric acid in the solution. The equation is simplified for zero and high concentrations of the acid. Experiments at high concentrations of sulfuric acid have enabled the direct determination of Henry’s constant and its dependency on temperature. Heat of dissolution is -31.47 kJ/mol. Experiments in the absence of sulfuric acid and the related simplified expression have led to the determination of the equilibrium constant of the hydrolysis of aqueous sulfur dioxide and its temperature dependency.The heat of hydrolysis is 15.69 kJ/mol. The model equation with these parameters predicts the experimental data of the present work as well as the reported data very well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfur dioxide in aqueous solutions at low pH levels exists both in molecular SO2(aq) and in hydrolyzed ionic form HSO3-. Experiments indicate that only HSO3- is the reacting species in the oxidation catalyzed by activated carbon, while SO2(aq) deactivates by competing with HSO3 for the active sites of the catalyst particles. A mechanism is proposed and a rate model is developed that also accounts for the effect of sulfuric acid (product of the oxidation) on the solubility of sulfur dioxide. It predicts first order in HSO3-, half order in dissolved oxygen, and a linear deactivation effect of SO2(aq), which are confirmed by experimental data. The deactivation reaches a constant level corresponding to saturation of the active sites by SO2(aq). Activation energy for the oxidation is 93.55 kJ mol(-1) and for deactivation is 21.4 kJ mol(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of ``smart structured'' conducting polymers and the fabrication of devices using them are important areas of research. However, conducting polymeric materials that are used in devices are susceptible to degradation due to oxygen and moisture. Thus, protection of such devices to ensure long-term stability is always desirable. Polymer nanocomposites are promising materials for the encapsulation of such devices. Therefore, it is important to develop suitable polymer nanocomposites as encapsulation materials to protect such devices. This work presents a technique based on grafting between surface-decorated gamma-alumina nanoparticles and polymer to make nanocomposites that can be used for the encapsulation of devices. Alumina was functionalized with allyltrimethoxysilane and used to conjugate polymer molecules (hydride-terminated polydimethylsiloxane) through a platinum-catalyzed hydrosilylation reaction. Fourier transform infrared spectroscopy, X-ray-photoelectron spectroscopy, and Raman spectroscopy were used to characterize the surface chemistry of the nanoparticles after surface modification. The grafting density of alkene groups on the surface of the modified nanoparticles was calculated using CHN and thermogravimetric analyses. The thermal stability of the composites was also evaluated using thermogravimetric analysis. The nanoindentation technique was used to analyze the mechanical characteristics of the composites. The densities of the composites were evaluated using a density gradient column, and the morphology of the composites was evaluated by scanning electron microscopy. All of our studies reveal that the composites have good thermal stability and mechanical flexibility and, thus, can potentially be used for the encapsulation of organic photovoltaic devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Commercially important flavor esters of isoamyl alcohol, catalyzed by crude hog pancreas lipase (HPL), were synthesized under solvent-free conditions and in supercritical carbon dioxide. The esters synthesized were isoamyl acetate, isoamyl propionate, isoamyl butyrate, and isoamyl octanoate. Very low yields (3-4%) of isoamyl acetate were obtained, but high yields for the other three esters were obtained under both supercritical and solvent-free conditions. The yields of esters of the even-carbon acids, isoamyl acetate, butyrate, and octanoate, increased with increasing chain length, whereas the yield of isoamyl propionate was higher than that of isoamyl butyrate. The optimum temperature of the reaction was higher under supercritical conditions (45 degreesC) than under solvent-free conditions (35-40 degreesC). The effects of other parameters such as alcohol concentration, water concentration, and enzyme loading were investigated. An increase in the water concentration decreased the conversion significantly in supercritical carbon dioxide but not under solvent-free conditions. The optimum ratio of alcohol to acid was dependent on the extent of inhibition by the acid. Although providing a higher apparent yield by being run in a highly concentrated medium, the overall conversion under solvent-free conditions was lower than that under supercritical conditions for similar enzyme concentrations, indicating that the synthesis of esters in supercritical carbon dioxide might be a viable option.