957 resultados para indirect calorimetry


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To test six variations in the Goldberg equation for evaluating the underreporting of energy intake (EI) among obese women on the waiting list for bariatric surgery, considering variations in resting metabolic rate (RMR), physical activity, and food intake levels in group and individual approaches.Methods: One hundred obese women aged 20 to 45years (33.3 6.08) recruited from a bariatric surgery waiting list participated in the study. Underreporting assessment was based on the difference between reported energy intake, indirect calorimetry measurements and RMR (rEI:RMR), which is compatible with the predicted physical activity level (PAL). Six approaches were used for defining the cutoff points. The approaches took into account variances in the components of the rEI:RMR = PAL equation as a function of the assumed PAL, sample size (n), and measured or estimated RMR.Results: The underreporting percentage varied from 55% to 97%, depending on the approach used for generating the cutoff points. The ratio rEI:RMR and estimated PAL of the sample were significantly different (p = 0.001). Sixty-one percent of the women reported an EI lower than their RMR. The PAL variable significantly affected the cutoff point, leading to different proportions of underreporting. The RMR measured or estimated in the equation did not result in differences in the proportion of underreporting. The individual approach was less sensitive than the group approach.Conclusion: RMR did not interfere in underreporting estimates. However, PAL variations were responsible for significant differences in cutoff point. Thus, PAL should be considered when estimating underreporting, and even though the individual approach is less sensitive than the group approach, it may be a useful tool for clinical practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative stress is related with physiopathology of diabetes mellitus type II and with its secondary complications, such as diabetic nephropathy. Thus, the purpose of this study was to examine the effects of n-acetylcysteine NAC, an antioxidant from Allium cepa, on oxidative stress, morphometrical and nutritional parameters and basal metabolism and energetic substrate utilization, serum glucose and oral glucose tolerance test (OGTT), and renal function of high-sucrose intake rats. Animals were initially divided into three groups. Rats in the control group (C; n=10) were given free access to a standard chow and water; (S; n=10) group received standard chow and 30% sucrose in its drinking water; (SN; n=5) group received standard chow and 2g/L NAC and 30% sucrose in its drinking water. After 25 days of treatments, rats were submitted to indirect calorimetry in fasted and feed states. After 30 days of treatments, rats from C and S groups were divided into four groups of five rats each. The (CC) and (SS) groups were given an intra-gastric dose 0,6mL saline (0,9%NaCl) and the (CNAC) and (SNAC) groups were treated with a intra-gastric dose of 0,6mL NAC (160g/day), and then everybody received a intra-gastric dose of glucose solution (20%) for the OGTT. Animals of S and SN groups have higher liquid consumption and lower food consumption than C group. Calorimetric analyses confirm that despite of the final body weight had not statistical difference among groups, S group have lower resting metabolic rate when compared to C and SN animals. Besides, S group has higher respiratory quotient, higher carbohydrate oxidation and lower lipid oxidation, both in fasted and feed states, than C and SN groups, evidencing the beneficial effect of NAC. Fasting plasma glucose is increased in SS and SNAC animals when compared to CC and CNAC, however SN group has glicemic level at 30 min before OGTT decreased when ...(Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Obesity is fundamentally a problem of energy balance that develops when the energy intake is greater than the total energy expenditure (TEE). TEE is composed by the sum of resting energy expenditure (REE), thermal effect of foods and thermal effect of physical activity. Many factors can affect energy expenditure and energy homeostasis. Historically, the energy expenditure has been measured by indirect calorimetry. However, more recently, the use of doubly labeled water has allowed the assessment of energy expenditure in a 24 hour period, which expanded the knowledge on energy metabolism. Factors such as gender, age, thyroid disorders, physical activity and body composition affect REE as already established in the literature. However, there has been speculation whether other factors, such as adipocytokines and diet composition, which might be involved in the genesis of obesity by decreasing the REE. So, this paper aims to review the factors that can alter the energy metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Human immunodeficiency virus type 1 (HIV)-associated lipodystrophy syndrome compromises body composition and produces metabolic alterations, such as dyslipidemia and insulin resistance. This study aims to determine whether energy expenditure and substrate oxidation are altered due to human HIV-associated lipodystrophy syndrome. Methods: We compared energy expenditure and substrate oxidation in 10 HIV-infected men with lipodystrophy syndrome (HIV+LIPO+), 22 HIV-infected men without lipodystrophy syndrome (HIV+LIPO-), and 12 healthy controls. Energy expenditure and substrate oxidation were assessed by indirect calorimetry, and body composition was assessed by dual-energy X-ray absorptiometry. The substrate oxidation assessments were performed during fasting and 30 min after eucaloric breakfast consumption (300 kcal). Results: The resting energy expenditure adjusted for lean body mass was significantly higher in the HIV+LIPO+ group than in the healthy controls (P = 0.02). HIV-infected patients had increased carbohydrate oxidation and lower lipid oxidation when compared to the control group (P < 0.05) during fasting conditions. After the consumption of a eucaloric breakfast, there was a significant increase in carbohydrate oxidation only in the HIV+LIPO- and control groups (P < 0.05), but there was no increase in the HIV+LIPO+ group. Conclusion: Hypermetabolism and alteration in substrate oxidation were observed in the HIV+LIPO+ group. (C)2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] The purpose of this investigation was to determine the contribution of muscle O(2) consumption (mVO2) to pulmonary O(2) uptake (pVO2) during both low-intensity (LI) and high-intensity (HI) knee-extension exercise, and during subsequent recovery, in humans. Seven healthy male subjects (age 20-25 years) completed a series of LI and HI square-wave exercise tests in which mVO2 (direct Fick technique) and pVO2 (indirect calorimetry) were measured simultaneously. The mean blood transit time from the muscle capillaries to the lung (MTTc-l) was also estimated (based on measured blood transit times from femoral artery to vein and vein to artery). The kinetics of mVO2 and pVO2 were modelled using non-linear regression. The time constant (tau) describing the phase II pVO2 kinetics following the onset of exercise was not significantly different from the mean response time (initial time delay + tau) for mVO2 kinetics for LI (30 +/- 3 vs 30 +/- 3 s) but was slightly higher (P < 0.05) for HI (32 +/- 3 vs 29 +/- 4 s); the responses were closely correlated (r = 0.95 and r = 0.95; P < 0.01) for both intensities. In recovery, agreement between the responses was more limited both for LI (36 +/- 4 vs 18 +/- 4 s, P < 0.05; r = -0.01) and HI (33 +/- 3 vs 27 +/- 3 s, P > 0.05; r = -0.40). MTTc-l was approximately 17 s just before exercise and decreased to 12 and 10 s after 5 s of exercise for LI and HI, respectively. These data indicate that the phase II pVO2 kinetics reflect mVO2 kinetics during exercise but not during recovery where caution in data interpretation is advised. Increased mVO2 probably makes a small contribution to during the first 15-20 s of exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The field of research of this dissertation concerns the bioengineering of exercise, in particular the relationship between biomechanical and metabolic knowledge. This relationship can allow to evaluate exercise in many different circumstances: optimizing athlete performance, understanding and helping compensation in prosthetic patients and prescribing exercise with high caloric consumption and minimal joint loading to obese subjects. Furthermore, it can have technical application in fitness and rehabilitation machine design, predicting energy consumption and joint loads for the subjects who will use the machine. The aim of this dissertation was to further understand how mechanical work and metabolic energy cost are related during movement using interpretative models. Musculoskeletal models, when including muscle energy expenditure description, can be useful to address this issue, allowing to evaluate human movement in terms of both mechanical and metabolic energy expenditure. A whole body muscle-skeletal model that could describe both biomechanical and metabolic aspects during movement was identified in literature and then was applied and validated using an EMG-driven approach. The advantage of using EMG driven approach was to avoid the use of arbitrary defined optimization functions to solve the indeterminate problem of muscle activations. A sensitivity analysis was conducted in order to know how much changes in model parameters could affect model outputs: the results showed that changing parameters in between physiological ranges did not influence model outputs largely. In order to evaluate its predicting capacity, the musculoskeletal model was applied to experimental data: first the model was applied in a simple exercise (unilateral leg press exercise) and then in a more complete exercise (elliptical exercise). In these studies, energy consumption predicted by the model resulted to be close to energy consumption estimated by indirect calorimetry for different intensity levels at low frequencies of movement. The use of muscle skeletal models for predicting energy consumption resulted to be promising and the use of EMG driven approach permitted to avoid the introduction of optimization functions. Even though many aspects of this approach have still to be investigated and these results are preliminary, the conclusions of this dissertation suggest that musculoskeletal modelling can be a useful tool for addressing issues about efficiency of movement in healthy and pathologic subjects.