858 resultados para increased radio-resistance
Resumo:
Chemotherapy is a mainstay of cancer treatment. Due to increased drug resistance and the severe side effects of currently used therapeutics, new candidate compounds are required for improvement of therapy success. Shikonin, a natural naphthoquinone, was used in traditional Chinese medicine for the treatment of different inflammatory diseases and recent studies revealed the anticancer activities of shikonin. We found that shikonin has strong cytotoxic effects on 15 cancer cell lines, including multidrug-resistant cell lines. Transcriptome-wide mRNA expression studies showed that shikonin induced genetic pathways regulating cell cycle, mitochondrial function, levels of reactive oxygen species, and cytoskeletal formation. Taking advantage of the inherent fluorescence of shikonin, we analyzed its uptake and distribution in live cells with high spatial and temporal resolution using flow cytometry and confocal microscopy. Shikonin was specifically accumulated in the mitochondria, and this accumulation was associated with a shikonin-dependent deregulation of cellular Ca(2+) and ROS levels. This deregulation led to a breakdown of the mitochondrial membrane potential, dysfunction of microtubules, cell-cycle arrest, and ultimately induction of apoptosis. Seeing as both the metabolism and the structure of mitochondria show marked differences between cancer cells and normal cells, shikonin is a promising candidate for the next generation of chemotherapy.
Resumo:
Hypopituitarism with adult-onset growth hormone deficiency (GHD) is associated with increased cardiovascular morbidity and mortality due to premature and progressive atherosclerosis. An underlying cause of atherosclerosis is increased insulin resistance. Elevated fasting and postprandial glucose and lipid levels may contribute to premature atherosclerosis. We studied effects of growth hormone replacement (GHRT) on fasting and postprandial metabolic parameters as well as on insulin sensitivity in patients with adult-onset GHD.
Resumo:
Fetal echocardiography was initially used to diagnose structural heart disease, but recent interest has focused on functional assessment. Effects of extracardiac conditions on the cardiac function such as volume overload (in the recipient in twin-twin transfusion syndrome), a hyperdynamic circulation (arterio-venous malformation), cardiac compression (diaphragmatic hernia, lung tumours) and increased placental resistance (intrauterine growth restriction and placental insufficiency) can be studied by ultrasound and may guide decisions for intervention or delivery. A variety of functional tests can be used, but there is no single clinical standard. For some specific conditions, however, certain tests have shown diagnostic value.
Resumo:
BACKGROUND: Stopping antiretroviral therapy in patients with HIV-1 infection can reduce costs and side-effects, but carries the risk of increased immune suppression and emergence of resistance. METHODS: 430 patients with CD4-positive T-lymphocyte (CD4) counts greater than 350 cells per muL, and viral load less than 50 copies per mL were randomised to continued therapy (n=146) or scheduled treatment interruptions (n=284). Median time on randomised treatment was 21.9 months (range 16.4-25.3). Primary endpoints were proportion of patients with viral load less than 50 copies per mL at the end of the trial, and amount of drugs used. Analysis was intention-to-treat. This study is registered at ClinicalTrials.gov with the identifier NCT00113126. FINDINGS: Drug savings in the scheduled treatment interruption group, compared with continuous treatment, amounted to 61.5%. 257 of 284 (90.5%) patients in the scheduled treatment interruption group reached a viral load less than 50 copies per mL, compared with 134 of 146 (91.8%) in the continued treatment group (difference 1.3%, 95% CI-4.3 to 6.9, p=0.90). No AIDS-defining events occurred. Diarrhoea and neuropathy were more frequent with continuous treatment; candidiasis was more frequent with scheduled treatment interruption. Ten patients (2.3%) had resistance mutations, with no significant differences between groups. INTERPRETATION: Drug savings with scheduled treatment interruption were substantial, and no evidence of increased treatment resistance emerged. Treatment-related adverse events were more frequent with continuous treatment, but low CD4 counts and minor manifestations of HIV infection were more frequent with scheduled treatment interruption.
Resumo:
The regulation of blood pressure is complex with several organs being involved. Intracellular calcium plays a crucial role in the regulation of cardiovascular functions: An increased influx of calcium into the vascular smooth muscle cells leads to an augmental muscular tone and therefore to an increased vascular resistance and rise in blood pressure. Parathormone plays a permissive role since it regulates the calcium-influx into the cells and thus increases the vasoconstrictive effect. There is a positive correlation between parathormone and blood pressure, present in primary as well as secondary hyperparathyroidism. Moreover, patients with essential hypertension have high parathormone levels already before hypertension is diagnosed. A calcium-rich diet (> 1000 mg calcium daily) slightly decreases blood pressure. This positive effect is due to parathormone suppression with a subsequently decreased calcium content in the vascular smooth muscle cells. A calcium-rich diet inhibits lipogenesis in the fat tissue; thus additionally improving the cardiovascular risk profile.
Resumo:
BACKGROUND: Ibopamine is an alpha-adrenergic agent and causes an elevation of intraocular pressure in eyes with increased outflow resistance. It has been proposed as a test substance for the detection of early ocular hydrodynamic disorders. PATIENTS AND METHODS: A total of 64 normal-tension glaucoma suspect eyes without anti-hypertensive treatment were enrolled. A daily pressure curve was registered with measurements at 7:00 am, 8:00 am, 12:00 am, 17:00 pm using an applanation tonometer and a contour tonometer followed by instillation of ibopamine 2% in both eyes. Tonometry was performed every 15 minutes during the following hour. An IOP increase of > 2.0 mmHg was considered positive. RESULTS: The positive test group showed a significant pressure increase from 18.04 to 22.06 mmHg. Ocular pulse amplitude increased from 2.96 to 3.97 mmHg and was positively correlated with the pressure. Intraocular pressure was unchanged in the negative test group. Central corneal thickness was not significantly different in the two groups (p = 0.32). CONCLUSIONS: Ibopamine 2% eye drops have a positive pressure effect in 50% of suspected normal-tension glaucoma eyes and may differentiate between eyes with normal trabecular outflow capacity and eyes with increased resistance in the trabecular meshwork that are prone to pressure peaks and deterioration to glaucoma.
Resumo:
ABSTRACT: BACKGROUND: Conserved Wnt ligands are critical for signalling during development; however, various factors modulate their activity. Among these factors are the Secreted Frizzled-Related Proteins (SFRP). We previously isolated the SFRP-4 gene from an involuting rat mammary gland and later showed that transgenic mice inappropriately expressing SFRP-4 during lactation exhibited a high level of apoptosis with reduced survival of progeny. RESULTS: In order to address the questions related to the mechanism of Wnt signalling and its inhibition by SFRP-4 which we report here, we employed partially-purified Wnt-3a in a co-culture model system. Ectopic expression of SFRP-4 was accomplished by infection with a pBabepuro construct. The co-cultures comprised Line 31E mouse mammary secretory epithelial cells and Line 30F, undifferentiated, fibroblast-like mouse mammary cells. In vitro differentiation of such co-cultures can be demonstrated by induction of the beta-casein gene in response to lactogenic hormones.We show here that treatment of cells with partially-purified Wnt-3a initiates Dvl-3, Akt/PKB and GSK-3beta hyperphosphorylation and beta-catenin activation. Furthermore, while up-regulating the cyclin D1 and connexin-43 genes and elevating transepithelial resistance of Line 31E cell monolayers, Wnt-3a treatment abrogates differentiation of co-cultures in response to the lactogenic hormones prolactin, insulin and glucocorticoid. Cells which express SFRP-4, however, are largely unaffected by Wnt-3a stimulation. Since a physical association between Wnt-3a and SFRP-4 could be demonstrated with immunoprecipitation/Western blotting experiments, this interaction, presumably owing to the Frizzled homology region typical of all SFRPs, explains the refractory response to Wnt-3a which was observed. CONCLUSION: This study demonstrates that Wnt-3a treatment activates the Wnt signalling pathway and interferes with in vitro differentiation of mammary co-cultures to beta-casein production in response to lactogenic hormones. Similarly, in another measure of differentiation, following Wnt-3a treatment mammary epithelial cells could be shown to up-regulate the cyclin D1 and connexin-43 genes while phenotypically they show increased transepithelial resistance across the cell monolayer. All these behavioural changes can be blocked in mammary epithelial cells expressing SFRP-4. Thus, our data illustrate in an in vitro model a mechanism by which SFRP-4 can modulate a differentiation response to Wnt-3a.
Resumo:
BACKGROUND Persons with cystic fibrosis (CF) are at-risk for health effects from ambient air pollution but little is known about the interaction of nanoparticles (NP) with CF lungs. Here we study the distribution of inhaled NP in a murine CF model and aim to reveal mechanisms contributing to adverse effects of inhaled particles in susceptible populations. METHODS Chloride channel defective CftrTgH (neoim) Hgu mice were used to analyze lung function, lung distribution and whole body biokinetics of inhaled NP, and inflammatory responses after intratracheal administration of NP. Distribution of 20-nm titanium dioxide NP in lungs was assessed on ultrathin sections immediately and 24 h after a one-hour NP inhalation. NP biokinetics was deduced from total and regional lung deposition and from whole body translocation of inhaled 30-nm iridium NP within 24 h after aerosol inhalation. Inflammatory responses were assessed within 7 days after carbon NP instillation. RESULTS Cftr mutant females had moderately reduced lung compliance and slightly increased airway resistance compared to wild type mice. We found no genotype dependent differences in total, regional and head deposition or in secondary-organ translocation of inhaled iridium NP. Titanium dioxide inhalation resulted in higher NP uptake by alveolar epithelial cells in Cftr mutants. Instillation of carbon NP induced a comparable acute and transient inflammatory response in both genotypes. The twofold increase of bronchoalveolar lavage (BAL) neutrophils in Cftr mutant compared to wild type mice at day 3 but not at days 1 and 7, indicated an impaired capacity in inflammation resolution in Cftr mutants. Concomitant to the delayed decline of neutrophils, BAL granulocyte-colony stimulating factor was augmented in Cftr mutant mice. Anti-inflammatory 15-hydroxyeicosatetraenoic acid was generally significantly lower in BAL of Cftr mutant than in wild type mice. CONCLUSIONS Despite lacking alterations in lung deposition and biokinetics of inhaled NP, and absence of significant differences in lung function, higher uptake of NP by alveolar epithelial cells and prolonged, acute inflammatory responses to NP exposure indicate a moderately increased susceptibility of lungs to adverse effects of inhaled NP in Cftr mutant mice and provides potential mechanisms for the increased susceptibility of CF patients to air pollution.
Resumo:
The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.
Resumo:
The objective of this program is to reduce malaria incidence in Kenya. Malaria poses a large public health challenge in Kenya, and although public health efforts have traditionally been focused on treatment of infected patients, due to increased drug resistance and lack of drug-adherence, prevention strategies are needed. This program targets Kenyan women, the likely caretakers in the home, and promotes malaria prevention behaviors through health education. ^ A planning group will be assembled and a needs assessment will be performed, verifying risk factors and conditions associated with malaria, as well as personal and external determinants. Behavioral and environmental outcomes will be determined, and performance objectives for each outcome will be established. Matrices of change objectives will be created, and detailed methods and strategies will be linked to each change objective. Program elements include media, education, and incentives. All materials used in this program will be subjected to pre-test to ensure cultural relevance and fidelity. Matrices of change objectives will be created for program adopters and implementers, as well as correlating methods and strategies associated with each change objective. Performance objectives will also be compiled for program maintainers. A program evaluation plan will follow "Pre-Post Comparison Group" design. Outcome evaluation and process evaluation will be conducted. The sample population will be screened based on age and gender so as to maintain comparability to the target population. Measurements will be taken before the program to establish baseline, directly following the program to determine short-term effects, and three months after the program is completed to determine long-term effects. ^ One limitation of this program is selection bias, due to the nature of quasi-experimental studies. Thorough screening prior to sample selection will minimize selection bias and ensure group homogeneity. Another limitation is attrition, and this will be minimized where possible through the use of incentives. In cases where loss to follow-up is not avoidable, such as death or natural disasters, the attrition effect will be estimated using structural equation modeling after reviewing the sample size, differential attrition and total attrition. ^ This intervention is based heavily on health promotion theories, but it is important to remember that in the field, the program plan will likely include only the necessary practical strategies. The target population, Kenyan women of childbearing age, will be significant in decreasing the malaria disease burden in Kenya.^
Resumo:
Result of impact and compression tests on Chojuro, Twentieth Century, Tsu Li, and Ya Li varieties of Asian pears indicate that Chojuro pears are the firmest and most resistant to mechanical damage. At the time of harvest, Tsu Li and Ya Li pears could resist mechanical damage nearly as well as Chojuro pears, but they become more susceptible to bruising in cold storage. Twentieth Century pears are most sensitive to impact and compression bruising. Increased time in the ripening room produces more softening and increased bruise resistance of Chojuro and Twentieth Century pears than of Tsu Li and Ya Li pears.
Resumo:
Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.
Resumo:
Salicylic acid (SA) is an important component of systemic-acquired resistance in plants. It is synthesized from benzoic acid (BA) as part of the phenylpropanoid pathway. Benzaldehyde (BD), a potential intermediate of this pathway, was found in healthy and tobacco mosaic virus (TMV)-inoculated tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaf tissue at 100 ng/g fresh weight concentrations as measured by gas chromatography-mass spectrometry. BD was also emitted as a volatile organic compound from tobacco tissues. Application of gaseous BD to plants enclosed in jars caused a 13-fold increase in SA concentration, induced the accumulation of the pathogenesis-related transcript PR-1, and increased the resistance of tobacco to TMV inoculation. [13C6]BD and [2H5]benzyl alcohol were converted to BA and SA. Labeling experiments using [13C1]Phe in temperature-shifted plants inoculated with the TMV showed high enrichment of cinnamic acids (72%), BA (34%), and SA (55%). The endogenous BD, however, contained nondetectable enrichment, suggesting that BD was not the intermediate between cinnamic acid and BA. These results show that BD and benzyl alcohol promote SA accumulation and expression of defense responses in tobacco, and provide insight into the early steps of SA biosynthesis.
Resumo:
Portal hypertension resulting from increased intrahepatic resistance is a common complication of chronic liver diseases and a leading cause of death in patients with liver cirrhosis, a scarring process of the liver that includes components of both increased fibrogenesis and wound contraction. A reduced production of nitric oxide (NO) resulting from an impaired enzymatic function of endothelial NO synthase and an increased contraction of hepatic stellate cells (HSCs) have been demonstrated to contribute to high intrahepatic resistance in the cirrhotic liver. 2-(Acetyloxy) benzoic acid 3-(nitrooxymethyl) phenyl ester (NCX-1000) is a chemical entity obtained by adding an NO-releasing moiety to ursodeoxycholic acid (UDCA), a compound that is selectively metabolized by hepatocytes. In this study we have examined the effect of NCX-1000 and UDCA on liver fibrosis and portal hypertension induced by i.p. injection of carbon tetrachloride in rats. Our results demonstrated that although both treatments reduced liver collagen deposition, NCX-1000, but not UDCA, prevented ascite formation and reduced intrahepatic resistance in carbon tetrachloride-treated rats as measured by assessing portal perfusion pressure. In contrast to UDCA, NCX-1000 inhibited HSC contraction and exerted a relaxing effect similar to the NO donor S-nitroso-N-acetylpenicillamine. HSCs were able to metabolize NCX-1000 and release nitrite/nitrate in cell supernatants. In aggregate these data indicate that NCX-1000, releasing NO into the liver microcirculation, may provide a novel therapy for the treatment of patients with portal hypertension.
Resumo:
Collagen, the main structural component of the extracellular matrix (ECM), provides tensile stiffness to different structures and organs against rupture. However, collagen tissue-engineered implants are hereto still lacking in mechanical strength. Attempts to create stiffer scaffolds have resulted in increased brittleness of the material, reducing the versatility of the original component. The hypothesis behind this research is that the introduction of an elastic element in the scaffold will enhance the mechanical properties of the collagen-based scaffolds, as elastin does in the ECM to prevent irreversible deformation. In this study, an elastin-like polymer (ELP) designed and synthesized using recombinant DNA methodology is used with the view to providing increased proteolytic resistance and increased functionality to the scaffolds by carrying specific sequences for microbial transglutaminase cross-linking, endothelial cell adhesion, and drug delivery. Evaluation of the effects that cross-linking ELP-collagen has on the physicochemical properties of the scaffold such as porosity, presence of cross-linking, thermal behavior, and mechanical strength demonstrated that the introduction of enzymatically resistant covalent bonds between collagen and ELP increases the mechanical strength of the scaffolds in a dose-dependent manner without significantly affecting the porosity or thermal properties of the original scaffold. Importantly, the scaffolds also showed selective behavior, in a dose (ELP)-dependent manner toward human umbilical vein endothelial cells and smooth muscle cells when compared to fibroblasts.