990 resultados para imaging optics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implementing the plasma-lasing potential for tabletop nano-imaging on across a hot plasma medium drives short-wavelength lasing, promising for "turnkey" nano-imaging setups. A systematic study of the illumination characteristics, combined with design-adapted objectives, is presented. It is shown how the ultimate nano-scale feature is dictated by either the diffraction-limited or the wavefront-limited resolution, which imposed a combined study of both the source and the optics. For nano-imaging, the spatial homogeneity of the illumination (spot noise) was shown as critical. Plasma-lasing from a triple grazing-incidence pumping scheme compensated for the missing spot homogeneity in classical schemes. We demonstrate that a collimating mirror pre-conditions both the pointing stability and the divergence below half a mrad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a novel technique for the removal of astigmatism in submillimeter-wave optical systems through employment of a specific combination of so-called astigmatic off-axis reflectors. This technique treats an orthogonally astigmatic beam using skew Gaussian beam analysis, from which an anastigmatic imaging network is derived. The resultant beam is considered truly stigmatic, with all Gaussian beam parameters in the orthogonal directions being matched. This is thus considered an improvement over previous techniques wherein a beam corrected for astigmatism has only the orthogonal beam amplitude radii matched, with phase shift and phase radius of curvature not considered. This technique is computationally efficient, negating the requirement for computationally intensive numerical analysis of shaped reflector surfaces. The required optical surfaces are also relatively simple to implement compared to such numerically optimized shaped surfaces. This technique is implemented in this work as part of the complete optics train for the STEAMR antenna. The STEAMR instrument is envisaged as a mutli-beam limb sounding instrument operating at submillimeter wavelengths. The antenna optics arrangement for this instrument uses multiple off-axis reflectors to control the incident radiation and couple them to their corresponding receiver feeds. An anastigmatic imaging network is successfully implemented into an optical model of this antenna, and the resultant design ensures optimal imaging of the beams to the corresponding feed horns. This example also addresses the challenges of imaging in multi-beam antenna systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For clinical optoacoustic imaging, linear probes are preferably used because they allow versatile imaging of the human body with real-time display and free-hand probe guidance. The two-dimensional (2-D) optoacoustic image obtained with this type of probe is generally interpreted as a 2-D cross-section of the tissue just as is common in echo ultrasound. We demonstrate in three-dimensional simulations, phantom experiments, and in vivo mouse experiments that for vascular imaging this interpretation is often inaccurate. The cylindrical blood vessels emit anisotropic acoustic transients, which can be sensitively detected only if the direction of acoustic radiation coincides with the probe aperture. Our results reveal for this reason that the signal amplitude of different blood vessels may differ even if the vessels have the same diameter and initial pressure distribution but different orientation relative to the imaging plane. This has important implications for the image interpretation, for the probe guidance technique, and especially in cases when a quantitative reconstruction of the optical tissue properties is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an image quality assessment and enhancement method for high-resolution Fourier-Domain OCT imaging like in sub-threshold retina therapy. A Maximum-Likelihood deconvolution algorithm as well as a histogram-based quality assessment method are evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In combined clinical optoacoustic (OA) and ultrasound (US) imaging, epi-mode irradiation and detection integrated into one single probe offers flexible imaging of the human body. The imaging depth in epi-illumination is, however, strongly affected by clutter. As shown in previous phantom experiments, the location of irradiation plays an important role in clutter generation. We investigated the influence of the irradiation geometry on the local image contrast of clinical images, by varying the separation distance between the irradiated area and the acoustic imaging plane of a linear ultrasound transducer in an automated scanning setup. The results for different volunteers show that the image contrast can be enhanced on average by 25% and locally by more than a factor of two, when the irradiated area is slightly separated from the probe. Our findings have an important impact on the design of future optoacoustic probes for clinical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traveling-wave excitation close to the speed of light implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles. Pulse-front back-tilt is considered to overcome such trade-off. Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a strong front-end imaging/focusing component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Simultaneous Multiple Surface (SMS) method in planar geometry (2D) is applied to imaging designs, generating lenses that compare well with aplanatic designs. When the merit function utilizes image quality over the entire field (not just paraxial), the SMS strategy is superior. In fact, the traditional aplanatic approach is actually a particular case of the SMS strategy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a new two-dimensional optics design method is proposed that enables the coupling of three ray sets with two lens surfaces. The method is especially important for optical systems designed for wide field of view and with clearly separated optical surfaces. Fermat’s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The presented general analytic solution makes it possible to calculate the lens profiles. Ray tracing results for calculated 15th order Taylor polynomials describing the lens profiles demonstrate excellent imaging performance and the versatility of this new analytic design method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a new two-dimensional analytic optics design method is presented that enables the coupling of three ray sets with two lens profiles. This method is particularly promising for optical systems designed for wide field of view and with clearly separated optical surfaces. However, this coupling can only be achieved if different ray sets will use different portions of the second lens profile. Based on a very basic example of a single thick lens, the Simultaneous Multiple Surfaces design method in two dimensions (SMS2D) will help to provide a better understanding of the practical implications on the design process by an increased lens thickness and a wider field of view. Fermat?s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The transformation of these functional differential equations into an algebraic linear system of equations allows the successive calculation of the Taylor series coefficients up to an arbitrary order. The evaluation of the solution space reveals the wide range of possible lens configurations covered by this analytic design method. Ray tracing analysis for calculated 20th order Taylor polynomials demonstrate excellent performance and the versatility of this new analytical optics design concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new three-dimensional analytic optics design method is presented that enables the coupling of three ray sets with only two free-form lens surfaces. Closely related to the Simultaneous Multiple Surface method in three dimensions (SMS3D), it is derived directly from Fermat?s principle, leading to multiple sets of functional differential equations. The general solution of these equations makes it possible to calculate more than 80 coefficients for each implicit surface function. Ray tracing simulations of these free-form lenses demonstrate superior imaging performance for applications with high aspect ratio, compared to conventional rotational symmetric systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability of a device called the Spherical Geodesic Waveguide (SGW) to produce images with details below the classic Abbe diffraction limit (super-resolution) is analyzed here. The SGW is an optical system equivalent (by means of Transformation Optics) to the Maxwell Fish Eye (MFE) refractive index distribution. Recently, it has been claimed that the necessary condition to get super-resolution in the MFE and the SGW is the use of a Perfect Point Drain (PPD). The PPD is a punctual receptor placed in the focal point that absorbs the incident wave, without reflection or scattering. A microwave circuit comprising three elements, the SGW, the source and the drain (two coaxial lines loaded with specific impedances) is designed and simulated in COMSOL. The super-resolution properties have been analyzed for different position of the source and drain and for two different load impedances: the PPD and the characteristic line impedance. The results show that in both cases super-resolution occurs only for discrete number of frequencies. Out of these frequencies, the SGW does not show SR in the analysis carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the mathematical description of the temporal selfimaging effect is studied, focusing on the situation in which the train of pulses to be dispersed has been previously periodically modulated in phase and amplitude. It is demonstrated that, for each input pulse and for some specific values of the chromatic dispersion, a subtrain of optical pulses is generated whose envelope is determined by the Discrete Fourier Transform of the modulating coefficients. The mathematical results are confirmed by simulations of various examples and some limits on the realization of the theory are commented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new method of modeling imaging of laser beams in the presence of diffraction. Our method is based on the concept of first orthogonally expanding the resultant diffraction field (that would have otherwise been obtained by the laborious application of the Huygens diffraction principle) and then representing it by an effective multimodal laser beam with different beam parameters. We show not only that the process of obtaining the new beam parameters is straightforward but also that it permits a different interpretation of the diffraction-caused focal shift in laser beams. All of the criteria that we have used to determine the minimum number of higher-order modes needed to accurately represent the diffraction field show that the mode-expansion method is numerically efficient. Finally, the characteristics of the mode-expansion method are such that it allows modeling of a vast array of diffraction problems, regardless of the characteristics of the incident laser beam, the diffracting element, or the observation plane. (C) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental study of a planar microwave imaging system with step-frequency synthesized pulse for possible use in medical applications is described. Simple phantoms, consisting of a cylindrical plastic container with air or oil imitating fatty tissues and small highly reflective objects emulating tumors, are scanned with a probe antenna over a planar surface in the X-band. Different calibration schemes are considered for successful detection of these objects. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of an ultra-wideband planar tapered slot antenna for use in a circular cylindrical microwave imaging system is pre-sented. The antenna was designed assuming high dielectric substrate material Rogers RT6010LM to achieve its compact size. The developed antenna element (50 X 50 mm(2)) features a 10-dB return loss bandwidth from 2.75 GHz to more than 11 GHz. The gain of the antenna is between 3.5 and 9.4 dBi over the 3-10 GHz band. The experimental tests showed that the manufactured antenna element supports transmission of narrow pulses with negligible distortions, as required in the microwave imaging system. (c) 2006 Wiley Periodicals, Inc.