994 resultados para image sensor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a computer vision system that associates omnidirectional vision with structured light with the aim of obtaining depth information for a 360 degrees field of view. The approach proposed in this article combines an omnidirectional camera with a panoramic laser projector. The article shows how the sensor is modelled and its accuracy is proved by means of experimental results. The proposed sensor provides useful information for robot navigation applications, pipe inspection, 3D scene modelling etc

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we improve the guidance system performance via sensor fusion techniques. Vision based guidance systems can be improved in performance via radar tacking or employing video tracking by unmanned jying vehicles. We also introduce an image texture gradient based image segmentation technique to identify the target in a typical surface-to-air type application with the proposed Robust Extended Kalman Filter based state estimation technique for the implementation of the Proportional Navigation guidance controlleller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forged and tempered digital images become increasingly common on Facebook to aid computer frauds. The situation is worsened as many users can use a phone to take a photo and upload it to Facebook within two clicks, which highlights the need of image forensics for the cyber fraud cases. In this paper, we show the existence of the Facebook image filter which automatically changes the Facebook photos and consequently challenges the validity of forensic results. We aim to enable forensic investigators to relate a seized camera and a Facebook image. Specifically, we utilize intrinsic sensor pattern noise produced by a camera's lens to derive forensically useful information as Photo Response Non-Uniformity (PRNU) patterns. We propose to compare the PRNU patterns of a Facebook image and the flat field images produced by the candidate cameras. And we conclude this method to be effective by successfully identifying the correct iPhone from a list of four for a given Face book image.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The treatment of wastewaters contaminated with oil is of great practical interest and it is fundamental in environmental issues. A relevant process, which has been studied on continuous treatment of contaminated water with oil, is the equipment denominated MDIF® (a mixer-settler based on phase inversion). An important variable during the operation of MDIF® is the water-solvent interface level in the separation section. The control of this level is essential both to avoid the dragging of the solvent during the water removal and improve the extraction efficiency of the oil by the solvent. The measurement of oil-water interface level (in line) is still a hard task. There are few sensors able to measure oil-water interface level in a reliable way. In the case of lab scale systems, there are no interface sensors with compatible dimensions. The objective of this work was to implement a level control system to the organic solvent/water interface level on the equipment MDIF®. The detection of the interface level is based on the acquisition and treatment of images obtained dynamically through a standard camera (webcam). The control strategy was developed to operate in feedback mode, where the level measure obtained by image detection is compared to the desired level and an action is taken on a control valve according to an implemented PID law. A control and data acquisition program was developed in Fortran to accomplish the following tasks: image acquisition; water-solvent interface identification; to perform decisions and send control signals; and to record data in files. Some experimental runs in open-loop were carried out using the MDIF® and random pulse disturbances were applied on the input variable (water outlet flow). The responses of interface level permitted the process identification by transfer models. From these models, the parameters for a PID controller were tuned by direct synthesis and tests in closed-loop were performed. Preliminary results for the feedback loop demonstrated that the sensor and the control strategy developed in this work were suitable for the control of organic solvent-water interface level

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: (1) To evaluate the intraobserver agreement related to image interpretation and (2) to compare the accuracy of 100%, 200% and 400% zoomed digital images in the detection of simulated periodontal bone defects.Methods: Periodontal bone defects were created in 60 pig hemi-mandibles with slow-speed burs 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm and 3.0 mm in diameter. 180 standardized digital radiographs were made using Schick sensor and evaluated at 100%, 200% and 400% zooming. The intraobserver agreement was estimated by Kappa statistic (kappa). For the evaluation of diagnostic accuracy receiver operating characteristic (ROC) analysis was performed followed by chi-square test to compare the areas under ROC curves according to each level of zooming.Results: For 100%, 200% and 400% zooming the intraobserver agreement was moderate (kappa = 0.48, kappa = 0.54 and kappa = 0.43, respectively) and there were similar performances in the discrimination capacity, with ROC areas of 0.8611 (95% CI: 0.7660-0.9562), 0.8600 (95% CI: 0.7659-0.9540), and 0.8368 (95% CI: 0.7346-0.9390), respectively, with no statistical significant differences (chi(2)-test; P = 0.8440).Conclusions: A moderate intraobserver agreement was observed in the classification of periodontal bone defects and the 100%, 200% and 400% zoomed digital images presented similar performances in the detection of periodontal bone defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Paraguay River is the main tributary of the Paraná River and has an extension of 1.693 km in Brazilian territory. The navigability conditions are very important for the regional economy because most of the central-west Brazilian agricultural and mineral production is transported by the Paraguay waterway. Increased sedimentation along the channel requires continuous dredging to waterway maintenance. Systematic bathymetric surveys are periodically carried out in order to check depth condition along the channel using echo-sounding devices. In this paper, digital image processing and geostatistical analysis methods were used to analyze the applicability of the ASTER sensor to estimate channel depths in a segment of the upper Paraguay River. The results were compared with field data in order to choose the band with better adjustment and to evaluate the standard deviation. Comparing the VNIR bands, the best fit was presented by the red wavelength (band 2; 0,63 - 0,69 μm), showing a good representation of the channel depths shallow than 1,7 m. Applying geostatistical methods, the model accuracy was enhanced from 43 cm to 36 cm and undesired components were slacked. It was concluded that the digital number of band 2, converted to bathymetry information allows a good estimation of river depths and channel morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study was performed to compare the inverted digital images and film-based images of dry pig mandibles to measure the periodontal bone defect depth. Materials and Methods: Forty 2-wall bone defects were made in the proximal region of the premolar in the dry pig mandibles. The digital and conventional radiographs were taken using a Schick sensor and Kodak F-speed intraoral film. Image manipulation (inversion) was performed using Adobe Photoshop 7.0 software. Four trained examiners made all of the radiographic measurements in millimeters a total of three times from the cementoenamel junction to the most apical extension of the bone loss with both types of images: inverted digital and film. The measurements were also made in dry mandibles using a periodontal probe and digital caliper. The Student's t-test was used to compare the depth measurements obtained from the two types of images and direct visual measurement in the dry mandibles. A significance level of 0.05 for a 95% confidence interval was used for each comparison. Results: There was a significant difference between depth measurements in the inverted digital images and direct visual measurements (p>|t|=0.0039), with means of 6.29 mm (IC95%:6.04-6.54) and 6.79 mm (IC95%:6.45-7.11), respectively. There was a non-significant difference between the film-based radiographs and direct visual measurements (p>|t|=0.4950), with means of 6.64mm (IC95%:6.40-6.89) and 6.79mm(IC95%:6.45-7.11), respectively. Conclusion: The periodontal bone defect measurements in the inverted digital images were inferior to film-based radiographs, underestimating the amount of bone loss. copy; 2012 by Korean Academy of Oral and Maxillofacial Radiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image segmentation is a process frequently used in several different areas including Cartography. Feature extraction is a very troublesome task, and successful results require more complex techniques and good quality data. The aims of this paper is to study Digital Image Processing techniques, with emphasis in Mathematical Morphology, to use Remote Sensing imagery, making image segmentation, using morphological operators, mainly the multi-scale morphological gradient operator. In the segmentation process, pre-processing operators of Mathematical Morphology were used, and the multi-scales gradient was implemented to create one of the images used as marker image. Orbital image of the Landsat satellite, sensor TM was used. The MATLAB software was used in the implementation of the routines. With the accomplishment of tests, the performance of the implemented operators was verified and carried through the analysis of the results. The extration of linear feature, using mathematical morphology techniques, can contribute in cartographic applications, as cartographic products updating. The comparison to the best result obtained was performed by means of the morphology with conventional techniques of features extraction. © Springer-Verlag 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of CMOS cameras with embedded processors and wireless communication devices has enabled the development of distributed wireless vision systems. Wireless Vision Sensor Networks (WVSNs), which consist of wirelessly connected embedded systems with vision and sensing capabilities, provide wide variety of application areas that have not been possible to realize with the wall-powered vision systems with wired links or scalar-data based wireless sensor networks. In this paper, the design of a middleware for a wireless vision sensor node is presented for the realization of WVSNs. The implemented wireless vision sensor node is tested through a simple vision application to study and analyze its capabilities, and determine the challenges in distributed vision applications through a wireless network of low-power embedded devices. The results of this paper highlight the practical concerns for the development of efficient image processing and communication solutions for WVSNs and emphasize the need for cross-layer solutions that unify these two so-far-independent research areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]An accurate estimation of the number of people entering / leaving a controlled area is an interesting capability for automatic surveil- lance systems. Potential applications where this technology can be ap- plied include those related to security, safety, energy saving or fraud control. In this paper we present a novel con guration of a multi-sensor system combining both visual and range data specially suited for trou- blesome scenarios such as public transportation. The approach applies probabilistic estimation lters on raw sensor data to create intermediate level hypothesis that are later fused using a certainty-based integration stage. Promising results have been obtained in several tests performed on a realistic test bed scenario under variable lightning conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with Visual Servoing and its strictly connected disciplines like projective geometry, image processing, robotics and non-linear control. More specifically the work addresses the problem to control a robotic manipulator through one of the largely used Visual Servoing techniques: the Image Based Visual Servoing (IBVS). In Image Based Visual Servoing the robot is driven by on-line performing a feedback control loop that is closed directly in the 2D space of the camera sensor. The work considers the case of a monocular system with the only camera mounted on the robot end effector (eye in hand configuration). Through IBVS the system can be positioned with respect to a 3D fixed target by minimizing the differences between its initial view and its goal view, corresponding respectively to the initial and the goal system configurations: the robot Cartesian Motion is thus generated only by means of visual informations. However, the execution of a positioning control task by IBVS is not straightforward because singularity problems may occur and local minima may be reached where the reached image is very close to the target one but the 3D positioning task is far from being fulfilled: this happens in particular for large camera displacements, when the the initial and the goal target views are noticeably different. To overcame singularity and local minima drawbacks, maintaining the good properties of IBVS robustness with respect to modeling and camera calibration errors, an opportune image path planning can be exploited. This work deals with the problem of generating opportune image plane trajectories for tracked points of the servoing control scheme (a trajectory is made of a path plus a time law). The generated image plane paths must be feasible i.e. they must be compliant with rigid body motion of the camera with respect to the object so as to avoid image jacobian singularities and local minima problems. In addition, the image planned trajectories must generate camera velocity screws which are smooth and within the allowed bounds of the robot. We will show that a scaled 3D motion planning algorithm can be devised in order to generate feasible image plane trajectories. Since the paths in the image are off-line generated it is also possible to tune the planning parameters so as to maintain the target inside the camera field of view even if, in some unfortunate cases, the feature target points would leave the camera images due to 3D robot motions. To test the validity of the proposed approach some both experiments and simulations results have been reported taking also into account the influence of noise in the path planning strategy. The experiments have been realized with a 6DOF anthropomorphic manipulator with a fire-wire camera installed on its end effector: the results demonstrate the good performances and the feasibility of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last few years, several methods have been proposed in order to study and to evaluate characteristic properties of the human skin by using non-invasive approaches. Mostly, these methods cover aspects related to either dermatology, to analyze skin physiology and to evaluate the effectiveness of medical treatments in skin diseases, or dermocosmetics and cosmetic science to evaluate, for example, the effectiveness of anti-aging treatments. To these purposes a routine approach must be followed. Although very accurate and high resolution measurements can be achieved by using conventional methods, such as optical or mechanical profilometry for example, their use is quite limited primarily to the high cost of the instrumentation required, which in turn is usually cumbersome, highlighting some of the limitations for a routine based analysis. This thesis aims to investigate the feasibility of a noninvasive skin characterization system based on the analysis of capacitive images of the skin surface. The system relies on a CMOS portable capacitive device which gives 50 micron/pixel resolution capacitance map of the skin micro-relief. In order to extract characteristic features of the skin topography, image analysis techniques, such as watershed segmentation and wavelet analysis, have been used to detect the main structures of interest: wrinkles and plateau of the typical micro-relief pattern. In order to validate the method, the features extracted from a dataset of skin capacitive images acquired during dermatological examinations of a healthy group of volunteers have been compared with the age of the subjects involved, showing good correlation with the skin ageing effect. Detailed analysis of the output of the capacitive sensor compared with optical profilometry of silicone replica of the same skin area has revealed potentiality and some limitations of this technology. Also, applications to follow-up studies, as needed to objectively evaluate the effectiveness of treatments in a routine manner, are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Images of a scene, static or dynamic, are generally acquired at different epochs from different viewpoints. They potentially gather information about the whole scene and its relative motion with respect to the acquisition device. Data from different (in the spatial or temporal domain) visual sources can be fused together to provide a unique consistent representation of the whole scene, even recovering the third dimension, permitting a more complete understanding of the scene content. Moreover, the pose of the acquisition device can be achieved by estimating the relative motion parameters linking different views, thus providing localization information for automatic guidance purposes. Image registration is based on the use of pattern recognition techniques to match among corresponding parts of different views of the acquired scene. Depending on hypotheses or prior information about the sensor model, the motion model and/or the scene model, this information can be used to estimate global or local geometrical mapping functions between different images or different parts of them. These mapping functions contain relative motion parameters between the scene and the sensor(s) and can be used to integrate accordingly informations coming from the different sources to build a wider or even augmented representation of the scene. Accordingly, for their scene reconstruction and pose estimation capabilities, nowadays image registration techniques from multiple views are increasingly stirring up the interest of the scientific and industrial community. Depending on the applicative domain, accuracy, robustness, and computational payload of the algorithms represent important issues to be addressed and generally a trade-off among them has to be reached. Moreover, on-line performance is desirable in order to guarantee the direct interaction of the vision device with human actors or control systems. This thesis follows a general research approach to cope with these issues, almost independently from the scene content, under the constraint of rigid motions. This approach has been motivated by the portability to very different domains as a very desirable property to achieve. A general image registration approach suitable for on-line applications has been devised and assessed through two challenging case studies in different applicative domains. The first case study regards scene reconstruction through on-line mosaicing of optical microscopy cell images acquired with non automated equipment, while moving manually the microscope holder. By registering the images the field of view of the microscope can be widened, preserving the resolution while reconstructing the whole cell culture and permitting the microscopist to interactively explore the cell culture. In the second case study, the registration of terrestrial satellite images acquired by a camera integral with the satellite is utilized to estimate its three-dimensional orientation from visual data, for automatic guidance purposes. Critical aspects of these applications are emphasized and the choices adopted are motivated accordingly. Results are discussed in view of promising future developments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and critical structures. Challenges in the development of image overlay technologies for surgery remain in the projection setup. Calibration, patient registration, view direction, and projection obstruction remain unsolved limitations to image overlay techniques. In this paper, we propose a novel, portable, and handheld-navigated image overlay device based on miniature laser projection technology that allows images of 3-D patient-specific models to be projected directly onto the organ surface intraoperatively without the need for intrusive hardware around the surgical site. The device can be integrated into a navigation system, thereby exploiting existing patient registration and model generation solutions. The position of the device is tracked by the navigation system’s position sensor and used to project geometrically correct images from any position within the workspace of the navigation system. The projector was calibrated using modified camera calibration techniques and images for projection are rendered using a virtual camera defined by the projectors extrinsic parameters. Verification of the device’s projection accuracy concluded a mean projection error of 1.3 mm. Visibility testing of the projection performed on pig liver tissue found the device suitable for the display of anatomical structures on the organ surface. The feasibility of use within the surgical workflow was assessed during open liver surgery. We show that the device could be quickly and unobtrusively deployed within the sterile environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source materials like fine art, over-sized, fragile maps, and delicate artifacts have traditionally been digitally converted through the use of controlled lighting and high resolution scanners and camera backs. In addition the capture of items such as general and special collections bound monographs has recently grown both through consortial efforts like the Internet Archive's Open Content Alliance and locally at the individual institution level. These projects, in turn, have introduced increasingly higher resolution consumer-grade digital single lens reflex cameras or "DSLRs" as a significant part of the general cultural heritage digital conversion workflow. Central to the authors' discussion is the fact that both camera backs and DSLRs commonly share the ability to capture native raw file formats. Because these formats include such advantages as access to an image's raw mosaic sensor data within their architecture, many institutions choose raw for initial capture due to its high bit-level and unprocessed nature. However to date these same raw formats, so important to many at the point of capture, have yet to be considered "archival" within most published still imaging standards, if they are considered at all. Throughout many workflows raw files are deleted and thrown away after more traditionally "archival" uncompressed TIFF or JPEG 2000 files have been derived downstream from their raw source formats [1][2]. As a result, the authors examine the nature of raw anew and consider the basic questions, Should raw files be retained? What might their role be? Might they in fact form a new archival format space? Included in the discussion is a survey of assorted raw file types and their attributes. Also addressed are various sustainability issues as they pertain to archival formats with a special emphasis on both raw's positive and negative characteristics as they apply to archival practices. Current common archival workflows versus possible raw-based ones are investigated as well. These comparisons are noted in the context of each approach's differing levels of usable captured image data, various preservation virtues, and the divergent ideas of strictly fixed renditions versus the potential for improved renditions over time. Special attention is given to the DNG raw format through a detailed inspection of a number of its various structural components and the roles that they play in the format's latest specification. Finally an evaluation is drawn of both proprietary raw formats in general and DNG in particular as possible alternative archival formats for still imaging.